Skip to main content
Log in

An artificial-viscosity method for the lagrangian analysis of shocks in solids with strength on unstructured, arbitrary-order tetrahedral meshes

  • Published:
Journal of Computer-Aided Materials Design

Abstract

We present an artificial viscosity scheme tailored to finite-deformation Lagrangian calculations of shocks in materials with or without strength on unstructured tetrahedral meshes of arbitrary order. The artificial viscous stresses are deviatoric and satisfy material-frame indifference exactly. We have assessed the performance of the method on selected tests, including: a two-dimensional shock tube problem on an ideal gas; a two-dimensional piston problem on tantalum without strength; and a three-dimensional plate impact problem on tantalum with strength. In all cases, the artificial viscosity scheme returns stable and ostensibly oscillation-free solutions on meshes which greatly underresolve the actual shock thickness. The scheme typically spreads the shock over 4 to 6 elements and captures accurately the shock velocities and jump conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lapidus, A., J. Comput. Phys. 2 (1967) 154.

    Article  Google Scholar 

  2. Cockburn, B., In Barth, T.J. and Deconinck H. (Eds), High-Order Methods for Computational Physics, Springer-Verlag, Berlin, 1999, pp. 69-224.

    Google Scholar 

  3. Belytschko, T., In Belytschko, T. and Hughes, T.J.R. (Eds), Computational Methods for Transient Analysis, North-Holland, Amsterdam, 1983, pp. 1-65.

    Google Scholar 

  4. Kane, C., Marsden, J.E., Ortiz, M. and West, M., Int. J. Num. Meth. Eng. 49 (2000) 1295.

    Article  Google Scholar 

  5. Ciarlet, P.G., Numerical Analysis of the Finite Element Method. Les Presses de L'Universite de Montreal, Quebec, Canada, 1976.

    Google Scholar 

  6. Cuitiño, A.M. and Ortiz, M., Eng. Comput. 9 (1992) 437.

    Google Scholar 

  7. Benson, D.J., Comput. Meth. Appl. Mech. Eng. 99 (1992) 235.

    Article  Google Scholar 

  8. Steinberg, D.J., Cochran, S.G. and Guinan, M.W., J. Appl. Phys. 51 (1980) 1498.

    Article  CAS  Google Scholar 

  9. Hirth, J.P. and Lothe, J., Theory of Dislocations. McGraw-Hill, New York, 1968.

    Google Scholar 

  10. Hodowany, J., Ravichandran, G., Rosakis, A.J. and Rosakis, P. (Eds), Exp. Mech. 40(2) (2000) 113.

  11. Hughes, T.J.R., In Belytschko, T. and Hughes, T.J.R. (Eds), Computational Methods for Transient Analysis, North-Holland, Amsterdam, 1983, pp. 67-55.

    Google Scholar 

  12. Von Neumann, J. and Richtmyer, R.D., J. Appl. Phys. 21 (1950) 232.

    Article  Google Scholar 

  13. Lubliner, J., International J. Non-Linear Mech. 7 (1972) 237.

    Article  Google Scholar 

  14. Wilkins, M., J. Comput. Phys. 36 (1980) 281.

    Article  Google Scholar 

  15. Marsden, J.E. and Hughes, T.J.R. Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs, N.J., 1983.

    Google Scholar 

  16. Ortiz, M., Radovitzky, R.A. and Repetto, E.A., Int. J. Num. Meth. Eng. 2000.

  17. Ortiz, M. and Stainier, L., Comput. Meth. Appl. Mech. Eng. 171(3-4) (1999) 419.

    Article  Google Scholar 

  18. Lax, P. and Wendroff, B., Commun. Pure Appl. Math. XIII (1960) 217.

    Google Scholar 

  19. Nithiarasu, P. Zienkiewicz, O.C., Satya Sai, B.V.K., Morgan, K., Codina R. and Vazquez, M., Int. J. Num. Meth. Eng. 28 (1998) 1325.

    Google Scholar 

  20. Woodward, P. and Colella, P., J. Comput. Phys. 54 (1984) 115.

    Article  Google Scholar 

  21. Menikoff, R. and Lackner, K.S. Anomalous physical effects from artificial numerical length scales. In Sturtevant, B., Shepherd, J.E. and Hornung, H.G. (Eds), Proceedings of the 20th International Symposium on shock Waves, Vol. 1, World Scientific, Singapore, 1995, pp. 87-96.

    Google Scholar 

  22. Cohen, R.E., Private communication, 2000.

  23. Cohen, R.E. and Gülseren, O., Thermal equation of state of tantalum. http://arxiv.org/ps/cond-mat/0006213, 2000?

  24. MacCormack, R.W. and Baldwin, B.S., AIAA Paper 75-1, 1975.

  25. Radovitzky, R. and Ortiz, M., Comput. Meth. Appl. Mech. Eng. 172 (1999) 203.

    Article  Google Scholar 

  26. Swegle, J.W. and Grady, D.E., J. Appl. Phys. 58(2) (1985) 692.

    Article  Google Scholar 

  27. Schulz, W.D., J. Math. Phys. 5 (1964) 133.

    Article  Google Scholar 

  28. Noh, W.F., J. Comput. Phys. 72 (1987) 78.

    Article  Google Scholar 

  29. Whitham, G.B., Pure and Applied Mathematics. Wiley, New York, 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lew, A., Radovitzky, R. & Ortiz, M. An artificial-viscosity method for the lagrangian analysis of shocks in solids with strength on unstructured, arbitrary-order tetrahedral meshes. Journal of Computer-Aided Materials Design 8, 213–231 (2001). https://doi.org/10.1023/A:1020064403005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020064403005

Navigation