Skip to main content
Log in

Albumin Microspheres as a Drug Delivery System: Relation Among Turbidity Ratio, Degree of Cross-linking, and Drug Release

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The degree of cross-linking of albumin microspheres, with and without drug, was assessed using turbidity measurements carried out in the presence of water and the protein denaturant guanidine hydrochloride (GuHCl) at a concentration that disrupted noncovalent bonds while having no effect on covalent bonds. The measurements allowed calculation of a turbidity ratio (T G/T W), expressed as the ratio of the turbidity of albumin microspheres in 6 M GuHCl (T G) divided by that in water (T w). A linear relation existed between T G/T W and the (i) temperature at which the microspheres were prepared, (ii) concentration of the cross-linking agent glutaraldehyde, and (iii) time of exposure to a second cross-linking agent, formaldehyde vapor, three conditions that increase the degree of cross-linking. The turbidity ratio also increased as the concentration of the albumin solution used to prepare the microspheres increased from 25 to 50%. Drug release from the microspheres consisted of an initial, rapid, burst followed by a second, slower, phase. The rates in both release phases were inversely related to the turbidity ratio, suggesting that this parameter has utility as an indicator of the degree of cross-linking in albumin microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. Kramer. Albumin microspheres as vehicles for achieving specificity in drug delivery. J. Pharm. Sci. 63:1646–1647 (1974).

    Google Scholar 

  2. H. Ovadia, A. M. Carbone, and P. Y. Paterson. Albumin magnetic microspheres: A novel carrier for myelin basic protein. J Immunol. Methods. 53(1):109–122 (1982).

    Google Scholar 

  3. J. Kandzia, W. Scholz, M. J. D. Anderson, and W. Muller-Ruchholtz. Magnetic albumin/protein A immunomicrospheres. Preparation, antibody binding capacity and chemical stability. J. Immunol. Methods 75(1):31–41 (1982).

    Google Scholar 

  4. K. J. Widder, A. E. Senyei, and D. F. Ranney. Magnetically responsive microspheres and other carriers for the biophysical targeting of antitumor agents. Adv. Pharmaco. Chemother. 16:213–265 (1979).

    Google Scholar 

  5. T. K. Lee, T. D. Sokoloski, and G. P. Royer. Serum albumin beads: An injectable, biodegradable system for the sustained release of drugs. Science 213:233–235 (1981).

    Google Scholar 

  6. E. Tomlinson and J. J. Burger. Incorporation of water-soluble drugs in albumin microspheres. Methods Enzymol. 112:27–43 (1985).

    Google Scholar 

  7. R. R. Martodam, D. Y. Twumasi, I. E. Liener, J. C. Powers, N. Nishino, and G. Krejcarek. Albumin microspheres as carrier of an inhibitor of leukocyte elastase: Potential therapeutic agent for emphysema. Proc. Natl. Acad. Sci. 76(5):2128–2132 (1979).

    Google Scholar 

  8. E. Tomlinson. Microsphere delivery systems for drug targeting and controlled release. Int. J. Pharm. Tech. Prod. Mfr. 4(3):49–57 (1983).

    Google Scholar 

  9. R. S. Asquith and M. S. Ottenburn. Cystine-alkali reactions in relation to protein crosslinking. Adv. Exp. Med. Biol. 86:93–121 (1977).

    Google Scholar 

  10. A. H. Korn, S. H. Feairheller, and E. M. Filachione. Glutaraldehyde: Nature of the reagent. J. Mol. Biol. 65:525–529 (1972).

    Google Scholar 

  11. T. D. Sokoloski and G. P. Royer. Drug entrapment within native albumin beads. In S. S. Davis, L. Illum, J. G. McVie, and E. Tomlinson (eds.), Microspheres and Drug Therapy, Elsevier, Amsterdam, 1984, pp. 295–307.

    Google Scholar 

  12. K. Peters and F. M. Richards. Chemical crosslinking: Reagents and problems in studies of membrane structure. Annu. Rev. Biochem. 46:523–551 (1977).

    Google Scholar 

  13. I. Zolle, B. A. Rhodes, and H. N. Wagner, Jr. Preparation of metabolizable radioactive human serum albumin microspheres for studies of the circulation. Int. J. Appl. Radiat. Isotop. 21:155–167 (1970).

    Google Scholar 

  14. P. K. Gupta, C. Hung, and D. G. Perrier. Albumin microspheres. II. Effect of stabilization temperature on the release of adriamycin. Int. J. Pharm. 33:147–153 (1986).

    Google Scholar 

  15. J. J. Burger, E. Tomlinson, E. M. A. Mulder, and J. G. McVie. Albumin microspheres for intra-arterial tumor targeting. I. Pharmaceutical aspects. Int. J. Pharm. 23:333–344 (1985).

    Google Scholar 

  16. W. E. Longo and E. P. Goldberg. Hydrophilic albumin microspheres. Methods. Enzymol. 112:19–26 (1985).

    Google Scholar 

  17. J. B. Caldwell, S. J. Leach, and B. Milligan. Solubility as a criterion of cross-linking in wool. Textile Res. J. 36:1091–1095 (1966).

    Google Scholar 

  18. F. S. M. Van Kleef. Thermally induced protein gelation: Gelation and rheological characterization of highly concentrated ovalbumin and soybean protein gels. Biopolymers 25:31–59 (1986).

    Google Scholar 

  19. A. J. Aguiar, J. E. Zelmer, and A. W. Kinkel. Deaggregation behavior of a relatively insoluble substituted benzoic acid and its sodium salt. J. Pharm. Sci. 56:1243–1252 (1967).

    Google Scholar 

  20. D. J. A. Crommelin, N. Slaats, and L. van Bloois. Int. J. Pharm. 16:79–92 (1983).

    Google Scholar 

  21. M. T. Sheu, M. A. Moustafa, and T. D. Sokoloski. Entrapment of bioactive compounds within native albumin beads. II. Effects of rate and extent of crosslinking on microbead properties. J. Parenter. Sci. Technol. 40(6):253–258 (1986).

    Google Scholar 

  22. O. Pruksananonda, R. J. Kowalsky, and J. Swarbrick. Turbidity as an indicator of crosslinking in albumin microspheres. J. Pharm. Sci. 76:S292 (1987).

    Google Scholar 

  23. S. Lapanje. Physicochemical Aspects of Protein Denaturation, Wiley, New York, 1978.

    Google Scholar 

  24. A. Shrake, J. S. Finlayson, and P. D. Ross. Thermal stability of human serum albumin measured by differential scanning calorimetry I. Effect of caprylate and N-acetyltryptophanate. Vox. Sang. 47:7–18 (1984).

    Google Scholar 

  25. F. Franks. Protein conformational stability. 22nd Annual Educational Conference on Industrial Pharmacy, Arden House, Harriman, New York, February 8–13, 1987.

  26. A. Yapel. Albumin medicament carrier system. U.S. Patent 4,147,767 (1979).

  27. D. Hopwood. A comparison of the crosslinking abilities of glutaraldedhye, formaldehyde and α-hydroxyadipaldehyde with bovine serum albumin and casein. Histochemie 17:151–161 (1969).

    Google Scholar 

  28. K. J. Widder, A. E. SenYei, and D. G. Scarpelli. Magnetic microspsheres: A model system for site specific drug delivery in vivo. Proc. Soc. Exp. Biol. Med. 58:141–146 (1978).

    Google Scholar 

  29. E. Tomlinson, J. J. Burger, E. M. A. Schoonderwaerd, and J. G. McVie. Human serum albumin microspheres for intraarterial drug targeting of cytostatic compounds; Pharmaceutical aspects and release characteristics. In S. S. Davis, L. Illum, J. G. McVie, and E. Tomlinson (eds.), Microspheres and Drug Therapy, Elsevier, Amsterdam, 1984, pp. 75–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubino, O.P., Kowalsky, R. & Swarbrick, J. Albumin Microspheres as a Drug Delivery System: Relation Among Turbidity Ratio, Degree of Cross-linking, and Drug Release. Pharm Res 10, 1059–1065 (1993). https://doi.org/10.1023/A:1018979126326

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018979126326

Navigation