Skip to main content
Log in

Variability Of The Stable And Unstable Atmospheric Boundary-Layer Height And Its Scales Over A Boreal Forest

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Radiosondes releases during the NOPEX-WINTEX experiment carried out in late winter in Northern Finland were analysed for the determination of the height h of the atmospheric boundary layer. We investigate various possible scaling approaches, based on length scales using micrometeorological turbulence surface measurements and the background atmospheric stratification above h. Under stable conditions, the three previously observed turbulence regimes delineated by values of z/L (L is the Obukhov length) appears as a blueprint for understanding the departures found for the suitability of the Ekman scaling based on LE = u★/f (u is the friction velocity and f the Coriolis parameter). The length scale LN = u★/N (where N is the Brunt–Väisälä frequency) appears to be a useful scale under most stable conditions, especially in association with L. Under unstable conditions, shear production of turbulence is still significant, so that the three scales L, LN and LE are again relevant and the dimensionless ratios μN = LN/L and LN/LE = N/f describe well the WINTEX data. Furthermore, in the classical scaling framework, the unstable domain may also be divided into three regimes as reflected by the dependence ofu★/f on instability (z/L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batchvarova, E.,Gryning, S.-E., andHasager, C. B.: 2001, ‘Regional Fluxes of Momentum and Sensible Heat over a Sub-Arctic Landscape during Late Winter’ Boundary-Layer Meteorol. 99, 489-507.

    Google Scholar 

  • Beljaars, A. C. M.: 1995, ‘The Impact of Some Aspects of the Boundary Layer Scheme in the ECMWF Model’ in Proceedings of the ECMWF Seminar on the Parametrization of Subgrid-Scale Physical Processes, September 1994, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, U.K., pp. 125-161.

    Google Scholar 

  • Betts, A. K.,Viterbo, P.,Beljaars, A.,Pan, H-L.,Hong, S-Y.,Goulden, M., andWofsy, S.: 1998, ‘Evaluation of Land-Surface Interaction in ECMWF and NCEP/NCAR Reanalysis Models over Grassland (FIFE) and Boreal Forest (BOREAS)’ J. Geophys. Res. 103(D18), 23079-23085.

    Google Scholar 

  • Driedonks, A. G. M. andTennekes, H.: 1984, ‘Entrainment Effects in the Well-Mixed Atmospheric Boundary Layer’ Boundary-Layer Meteorol. 30, 75-105.

    Google Scholar 

  • Halldin (ed.): 1999, Final Report for WINTEX, NOPEX Technical Report No. 29, 70 pp. (Available from: NOPEX Central Office, Institute of Earth Sciences, Uppsala University, Norbyvägen 18B, SE-75236 Uppsala, Sweden.)

  • Hicks, B. B.: 1978, ‘Some Limitations of Dimensional Analysis and Power Laws’ Boundary-Layer Meteorol. 14, 567-569.

    Google Scholar 

  • Joffre, S. M.: 1981, The Physics of the Mechanically-Driven Atmospheric Boundary Layer as an Example of Air-Sea Ice Interactions, Ph.D. Thesis, University of Helsinki, Dept. of Meteorology, Report No. 20, 75 pp.

  • Kitaigorodskii, S. A.: 1960, ‘Calculating the Thickness of the Wind-Induced Mixing Layer in the Ocean’ Izv. Acad. Sci. SSSR. Ser. Geofiz. 3, 425-431 (English edition 284-287).

    Google Scholar 

  • Kitaigorodskii, S. A.: 1988, ‘A Note on Similarity Theory for Atmospheric Boundary Layers in the Presence of Background Stable Stratification’ Tellus 40A, 434-438.

    Google Scholar 

  • Kitaigorodskii, S. A.: 1992, ‘The Location of Thermal Shelf Fronts and the Variability of the Heights of Tidal Benthic Boundary Layers’ Tellus 44A, 425-433.

    Google Scholar 

  • Kitaigorodskii, S. A. andJoffre, S. M.: 1988,’ In Search of a Simple Scaling for the Height of the Stratified Atmospheric Boundary Layer’ Tellus 40A(5), 419-433.

    Google Scholar 

  • Mahrt, L.,Sun, L.,Blumen, W.,Delany, T., andOncley, S.: 1998, ‘Nocturnal Boundary-Layer Regimes’ Boundary-Layer Meteorol. 88, 255-278.

    Google Scholar 

  • Mahrt, L.,Sun, J.,MacPherson, J. I.,Jensen, N. O., andDesjardins, R. L.: 1997, ‘Formulation of Surface Heat Flux: Application to BOREAS’ J. Geophys. Res. 102(D24), 29641-29649.

    Google Scholar 

  • Malhi, Y. S.: 1995, ‘The Significance of the Dual Solutions for Heat Fluxes Measured by the Temperature Fluctuations Method in Stable Conditions’ Boundary-Layer Meteorol. 74, 389-396.

    Google Scholar 

  • Maryon, R. H. andBest, M. J.: 1992, ‘NAME, ATMES and the Boundary Layer Problem’ Met O (APR) Turbulence and Diffusion Note, No. 204 (U.K. Met. Office).

  • Nabatov, V. N. andOzmidov, R. V.: 1987, ‘Investigation of the Bottom Boundary Layer in the Ocean’ Oceanologia XXVII, 5-11.

    Google Scholar 

  • Nieuwstadt, F. T. M.: 1981, ‘The Steady State Height and Resistance Laws of the Nocturnal Boundary Layer: Theory Compared with Cabauw Observations’ Boundary-Layer Meteorol. 20, 3-17.

    Google Scholar 

  • Overland, J. E. andDavidson, K. L.: 1992, ‘Geostrophic Drag Coefficients over Sea Ice’ Tellus 44A, 54-66.

    Google Scholar 

  • Pollard, R. T.,Rhines, P. B., andThompson, R. O. R. Y.: 1973, ‘The Deepening of the Wind-Mixed Layer’ Geophys. Fluid Dyn. 3, 381-404.

    Google Scholar 

  • Rahm, L. andSvensson, U.: 1989, ‘Dispersion in a Stratified Benthic Boundary Layer’ Tellus 41A, 148-161.

    Google Scholar 

  • Rossby, C. G. andMontgomery, R. B.: 1935, ‘The Layer of Frictional Influence in Wind and Ocean Currents’ Pap. Phys. Oceanog. Meteorol. 3(3), 1-101. (M.I.T. and Woods Hole Oceanog. Inst.)

    Google Scholar 

  • Seibert, P.,Beyrich, F,Gryning, S-E,Joffre, S.,Rasmussen, A., andTercier, Ph.: 1998,’ Mixing Height Determination for Dispersion Modelling’ in Fisher et al. (eds.), Final Report of COST-710 (Harmonisation of the Pre-processing of Meteorological Data for Atmospheric Dispersion Models), EUR18195 En, European Commission, DGXII, Brussels (B), 431 pp. (ISBN 92-828-3302-X.)

    Google Scholar 

  • Seibert, P.,Beyrich, F,Gryning, S-E,Joffre, S.,Rasmussen, A., andTercier, Ph.: 2000, ‘Review and Intercomparison of Operational Methods for the Determination of the Mixing Height’ Atmos. Environ. 34, 1001-1027.

    Google Scholar 

  • Van Pul, W. A. J.,Holtslag, A. A. M., andSwart, D. P. J.: 1994, ‘A Comparison of ABL Heights Inferred Routinely from Lidar and Radiosondes at Noontime’ Boundary-Layer Meteorol. 68, 173-191.

    Google Scholar 

  • Vogelezang, D. H. P. andHoltslag, A. A. M.: 1996, ‘Evaluation and Model Impacts of Alternative Boundary-Layer Height Formulations’ Boundary-Layer Meteorol. 81, 245-269.

    Google Scholar 

  • Zilitinkevich, S. S.: 1972, ‘On the Determination of the Height of the Ekman Boundary Layer’ Boundary-Layer Meteorol. 3, 141-145.

    Google Scholar 

  • Zilitinkevich, S. andCalanca, P.: 2000, ‘An Extended Similarity-Theory Formulation for the Stably Stratified Atmospheric Surface layer’ Quart. J. Roy. Meteorol. Soc. 126, 1913-1923.

    Google Scholar 

  • Zilitinkevich, S. andMironov, D. V.: 1996, ‘A Multi-Limit Formulation for the Equilibrium Depth of a Stably Stratified Boundary Layer’ Boundary-Layer Meteorol. 81, 325-351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joffre, S.M., Kangas, M., Heikinheimo, M. et al. Variability Of The Stable And Unstable Atmospheric Boundary-Layer Height And Its Scales Over A Boreal Forest. Boundary-Layer Meteorology 99, 429–450 (2001). https://doi.org/10.1023/A:1018956525605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018956525605

Navigation