Skip to main content
Log in

Microstructural Study of Oxidized γ-TiAl

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The microstructural development of oxidizedγ-TiAl is presented with a focus on oxidation inair. The investigations were carried out usingconventional, analytical, and, especially,energy-filtered transmission electron microscopy (EFTEM). Threeimportant points were studied in detail: (1) the“nitrogen effect,” (2) the“surface-finish effect,” and (3) thesubsurface zone. Nitrogen leads to the formation of TiN andTi2AlN at the metal-scale interfaceinterrupting alumina and thereby preventing thedevelopment of a continuous alumina layer. TheAl-depletion layer formed during the oxidation process develops from a single-phaselayer, consisting of a cubic phase, to a two-phaselayer, consisting of the cubic phase andα2-Ti3Al. The cubic phase isnot known in the system Ti-Al-O-N. Oxidation in oxygen depends on the surfacepreparation of the sample with rapid oxidation kineticsfor fine polishing and slow kinetics for a 600-gritSiC-paper finish. The rougher surface finish leads to the development of a recrystallization zonenear the surface and supports the formation of acontinuous alumina layer in the early stages ofoxidation. As for the oxidation in air, the cubic phaseis formed first underneath the oxide scale,followed by α2-Ti3Alformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. Choudhury, H. C. Graham, and J. W. Hinze, Proceedings of the Symposium on Properties of High Temperature Alloys (The Electrochemical Society, Princeton, NJ, 1976), p. 668.

    Google Scholar 

  2. A. Rahmel, W. J. Quadakkers, and M. Schütze, Mater. Corros. 46, 271 (1995).

    Google Scholar 

  3. J. Doychak, J. H. Westbrook, and R. L. Fleischer, eds. (John Wiley & Sons Ltd) in Intermetallic Compounds, Vol. 1, Principles, 977 (1994).

  4. G. H. Meier, Mater. Corros. 47, 595 (1996).

    Google Scholar 

  5. P. Brady, W. J. Brindley, J. L. Smialek, and I. E. Locci, JOM 48(11), 46 (1996).

    Google Scholar 

  6. P. Liu and J. Skogsmo, Acta Crystallogr. B47, 425 (1991).

    Google Scholar 

  7. Cheng,F. Dettenwanger, J. Mayer, E. Schumann, and M. Rühle, Scripta Metall. Mater. 34(5), 707 (1996).

    Google Scholar 

  8. Becker, A. Rahmel, M. Schorr, and M. Schütze, Oxid. Met. 38, 425 (1992).

    Google Scholar 

  9. N. Zheng, W. J. Quadakkers, A. Gil, and H. Nickel, Oxid. Met. 44, 477 (1995).

    Google Scholar 

  10. G. Kim, G. M. Kim, and C. J. Kim, Scripta Metall. Mater. 33(7), 1117 (1995).

    Google Scholar 

  11. S. Taniguchi, and T. Shibata, Intermetallics 4, 85 (1996).

    Google Scholar 

  12. U. Figge, A. Elschner, N. Zheng, and W. J. Quadakkers, J. Anal. Chem. 346, 75 (1993).

    Google Scholar 

  13. A. Wallace, R. K. Clark, S. N. Sankaran, and K. E. Wiedemann, Environmental Effects on Advanced Materials, R. H. Jones, R. E. Ricker, eds. (The Minerals, Metals & Materials Society, Warrendale, PA, 1991) p. 79.

    Google Scholar 

  14. Smithells Metals Reference Book, E. A. Brandes, and G. B. Brook, eds. (Butterworth-Heinemann, Oxford, 1992).

    Google Scholar 

  15. A. Kussmaul, Max-Planck-Institut für Metallforschung, private communication, 1997.

  16. SGTE solution database, Domaine Universitaire, B.P.66, (1992): F-38402 St. Martin d'Héres, Cedex, France.

  17. A. Rahmel and P. J. Spencer, Oxid. Met. 35, 53 (1991).

    Google Scholar 

  18. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, London, 1988).

    Google Scholar 

  19. S. Taniguchi, T. Shibata, A. Murakami, and K. Chihara, Oxid. Met. 42, 17 (1994).

    Google Scholar 

  20. S. Taniguchi, T. Shibata, and A. Murakami, Oxid. Met. 41, 103 (1994).

    Google Scholar 

  21. J. C. Schuster and J. Bauer, J. Solid State Chem. 53, 260 (1984).

    Google Scholar 

  22. J. Rakowski, Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, 1997.

    Google Scholar 

  23. G. Welsch, S. L. Friedman, and A. I. Kahveci, Microscopy of Oxidation, Vol. 1, M. J. Bennett and G. W. Lorimer, eds. (The Institute of Metals, London, 1991), p. 193.

    Google Scholar 

  24. G. Chen, Z. Sun, and X. Zhou, Corrosion 48(11), 939 (1992).

    Google Scholar 

  25. G. Chen, Z. Sun, and X. Zhou, Mater. Sci. Eng. A153, 597 (1992).

    Google Scholar 

  26. C. Lang and M. Schütze, Oxid. Met. 46, 255 (1996).

    Google Scholar 

  27. ASTM File-No. 4–0878 (1990).

  28. K. Wefers and C. Misra, Alcoa Technical Paper 19, (1987).

  29. M. Okumiya, G. Yamaguchi, O. Yamada, and S. Ono, Bull. Chem. Soc. Jpn. 44, 418 (1971).

    Google Scholar 

  30. E. Schumann and M. Rühle, Acta Metall. Mater. 42, 1481 (1994).

    Google Scholar 

  31. J. Doychak, J. L. Smialek, and T. E. Mitchell, Metall. Trans. 20A, 499 (1989).

    Google Scholar 

  32. Y. Umakoshi, M. Yamaguchi, T. Sakagami, and T. Yamane, J. Mater. Sci. 24, 1599 (1989).

    Google Scholar 

  33. C. Jin, W. J. Chen, K. L. Jing, and X. J. Wan, Scripta Metall. Mater. 29, 747 (1993).

    Google Scholar 

  34. X. L. Li, R. Hille, F. Teysandier, S. Choi, and F. J. J. von Loo, Acta Metall. Mater. 40, 3149 (1992).

    Google Scholar 

  35. Y. Shida and H. Anada, Mater. Trans. 35(9), 623 (1994).

    Google Scholar 

  36. N. Zheng, W. Fischer, H. Grübmeier, V. Shemet, and W. J. Quadakkers, Scripta Metall. Mater. 33(1), 47 (1995).

    Google Scholar 

  37. M.-X. Zhang, K.-C. Hsieh, J. DeKock, and Y. A. Chang, Scripta Metall. Mater. 27, 1361 (1992).

    Google Scholar 

  38. W. E. Dowling, Jr. and W. T. Donlon, Scripta Metall. Mater. 27, 1663 (1992).

    Google Scholar 

  39. R. W. Beye and R. Gronsky, Acta Metall. Mater. 42(4), 1373 (1994).

    Google Scholar 

  40. F. Dettenwanger, E. Schumann, J. Rakowski, G. H. Meier, and M. Rühle, Mater. Corros. 48, 23 (1996).

    Google Scholar 

  41. R. Beye, M. Verwerft, J. T. M. DeHosson, and R. Gronsky, Acta Mater. 44(10), 4225 (1996).

    Google Scholar 

  42. V. Shemet, P. Karduck, H. Hoven, B. Grushko, W. Fischer, and W. J. Quadakkers, Intermetallics 5, 271 (1997).

    Google Scholar 

  43. A. Kussmaul, H. J. Seifert, J. A. Golczewski, H. L. Lukas, and F. Aldinger, Conf. Proc. Status Seminar on Constitution and Phase Diagrams of Refractory Alloys and Magnetic Materials, Campinas, Brazil, in press (1996).

  44. E. H. Copland, B. Gleeson, and D. J. Young, in Proc. 13th Intern. Corros. Congr, Melbourne, Australia (1996), to be published.

  45. M. Gross, V. Kolarik, and A. Rahmel, Oxid. Met. 48, 171 (1997).

    Google Scholar 

  46. J. M. Rakowski, G. H. Meier, F. S. Pettit, F. Dettenwanger, E. Schumann, and M. Rühle, Scripta Metall. Mater. 35(12), 1417 (1996).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dettenwanger, F., Schumann, E., Ruhle, M. et al. Microstructural Study of Oxidized γ-TiAl. Oxidation of Metals 50, 269–307 (1998). https://doi.org/10.1023/A:1018892422121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018892422121

Navigation