Skip to main content
Log in

Characterization of Alumina Scales Formed During Isothermal and Cyclic Oxidation of Plasma-Sprayed TBC Systems at 1150°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The isothermal- and cyclic-oxidation behavior ofthermal barrier coating (TBC) systems consisting ofvacuum plasma-sprayed (VPS) Ni-22Cr-10Al-1Y (wt.%) bondcoatings and air plasma-sprayed (APS)Y2O3-stabilized ZrO2 (YSZ) top coatings (onsingle-crystal superalloys) was investigated. Themicrostructures, flaw contents, and fracture behavior ofthe Al2O3 scales formed duringoxidation testing at 1150°C were characterized (by analysis of coating andscale fracture surfaces and metallographic crosssections). Significant localized fracture and bucklingof the Al2O3 scales that formedalong the bond-coat-top-coat interfaces were observed after cyclic oxidationof TBCs. However, substantial amounts of localized scaledamage did not induce rapid TBC failure. Decohesion ofthe columnar alumina scales on the rough bond-coat surfaces occurred by both internalAl2O3 fracture (parallel to themetal surface) and oxide-metal delamination. There weremicrostructural indications ofAl2O3 scale crack healing bysintering into planar arrays of voids. Alumina scales that formed onconvex NiCrAlY surfaces (with radii of 50 μm or less)often contained significant amounts of internal voids(along grain boundaries) after cyclic oxidation, whereas scales formed by isothermal oxidationcontained few visible voids. Accelerated void growth inAl2O3 scales on the irregularNiCrAlY surfaces appeared to be creep-related and wasattributed to the synergistic effects of geometric and thermalstresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Birks, G. H. Meier, and F. S. Pettit, J. Mater. 46, 42 (1994).

    Google Scholar 

  2. A. M. Huntz, Mater. Sci. Eng. A201, 211 (1995).

    Google Scholar 

  3. H. E. Evans, Mater. Sci. Eng. A120, 239 (1989).

    Google Scholar 

  4. M. M. Nagl and W. T. Evans, J. Mater. Sci. 28, 6247 (1993).

    Google Scholar 

  5. M. Schütze, Oxid. Met. 44, 29 (1995).

    Google Scholar 

  6. T. A. Ramanarayana n, M. Raghavan, and R. Petkovic-Luton, J. Electrochem. Soc. Solid-State Sci. Technol. pp. 923–931 (1984).

  7. A. G. Evans, G. B. Crumley, and R.E. Demaray, Oxid. Met. 20, 193 (1983).

    Google Scholar 

  8. P. Choquet, C. Indrigo, and R. Mevrel, Mater. Sci. Eng. 88, 97 (1987).

    Google Scholar 

  9. M. Göbel, A. Rahmel, and M. Schütze, Oxid. Met. 41, 271 (1994).

    Google Scholar 

  10. A. H. Bartlett and R. Dal Maschio, J. Am. Ceram. Soc. 78, 1018 (1995).

    Google Scholar 

  11. B. A. Pint, Mater. High Temp. 14, 403 (1997).

    Google Scholar 

  12. J. D. Kuenzly and D. L. Douglass, Oxid. Met. 8, 139 (1974).

    Google Scholar 

  13. F. A. Golightly, F. H. Stott, and G. C. Wood, Oxid. Met. 10, 163 (1976).

    Google Scholar 

  14. T. A. Ramanarayana n, R. Ayer, R. Petkovic-Luton, and D. P. Leta, Oxid. Met. 29, 445 (1988).

    Google Scholar 

  15. B. A. Pint, Oxid. Met. 45, 1 (1996).

    Google Scholar 

  16. E. Schumann, J. C. Yang, M. Rühle, M. J. Graham, Oxid Met. 46, 37 (1996).

    Google Scholar 

  17. J. K. Tien and F. S. Petitt, Met. Trans. 3, 1587 (1982).

    Google Scholar 

  18. W. J. Quadakkers, H. Holzbrecher, K. G. Briefs, and H. Beske, Oxid Met. 32, 67 (1989).

    Google Scholar 

  19. A. Strawbridge and P. Y. Hou, Mater. High Temp. 12, 177 (1994).

    Google Scholar 

  20. B. A. Pint, J. R. Martin, and L. W. Hobbs, Oxid Met. 39, 167 (1993).

    Google Scholar 

  21. A. Funkenbusch, J. G. Smeggil, and N. S. Bornstein, Met. Trans. A16, 1164 (1985).

    Google Scholar 

  22. J. L. Smialek, Met. Trans. 22A, 739 (1991).

    Google Scholar 

  23. J. L. Smialek, NASA Tech. Mem., 107375 (1996).

  24. P. Kofstad, Oxid Met. 24, 265 (1985).

    Google Scholar 

  25. J. Smialek and R. Gibala, in High Temperature Corrosion, R. A. Rapp, ed. (NACE, Houston, TX, 1983), pp. 76–83.

    Google Scholar 

  26. B. A. Pint, Mater. High Temp. 13 3 (1995).

    Google Scholar 

  27. B. A. Pint, Oxid Met. 48, 303 (1997).

    Google Scholar 

  28. M. W. Brumm and H. J. Grabke, Corros. Sci. 34, 547 (1993).

    Google Scholar 

  29. J. G. Smeggil, A. W. Funkenbusch, and N. S. Bornstein, Met. Trans. 17A, 923 (1986).

    Google Scholar 

  30. R. A. Miller and C. E. Lowell, Thin Solid Films 95, 265 (1982).

    Google Scholar 

  31. R. V. Hillery, B. H. Pilsner, R. L. McKnight, T. S. Cook, and M. S. Hartle, NASA CR, 180807 (1988).

  32. J. T. DeMasi, K. D. Sheffler, and M. Ortiz, NASA CR, 182230 (1989).

  33. B. C. Wu, E. Chang, S. F. Chang, and D. Tu, J. Am. Ceram. Soc. 72, 212 (1989).

    Google Scholar 

  34. J. T. DeMasi-Marcin, K. D. Sheffler, and S. Bose, J. Eng. Gas Turbines Power 112, 521 (1990).

    Google Scholar 

  35. S. M. Meier, D. M. Nissley, and K. D. Sheffler, NASA CR, 189111 (1991).

  36. Y. H. Sohn, R. R. Biederman, and R. D. Sisson, Jr., J. Mater. Eng. Perform. 3, 55 (1994).

    Google Scholar 

  37. S. Bose and J. DeMasi-Marcin, J. Thermal Spray Technol. 6, 99 (1997).

    Google Scholar 

  38. R. A. Miller, NASA Technical Memorandum, 100283 (1988).

  39. W. J. Brindley and R. A. Miller, Surf. Coat. Technol. 43/44, 446 (1990).

    Google Scholar 

  40. W. J. Brindley, J. Thermal Spray Technol. 6, 85 (1997).

    Google Scholar 

  41. D. J. Wortman, E. C. Duderstadt, and W. A. Nelson, J. Eng. Gas Turbines Power 112, 527 (1990).

    Google Scholar 

  42. L. Lelait, S. Alperine, and R. Mevrel, J. Mater. Sci. 27, 5 (1992).

    Google Scholar 

  43. O. Unal, T. E. Mitchell, and A. H. Heuer, J. Am. Ceram. Soc. 77, 984 (1994).

    Google Scholar 

  44. S. Alperine, J. Eng. Gas Turbines Power 116, 256 (1994).

    Google Scholar 

  45. J. A. Haynes, E. D. Rigney, M. K. Ferber, and W. D. Porter, ASME, Paper 96-GT-286 (1996).

  46. J. A. Haynes, E. D. Rigney, M. K. Ferber, and W. D. Porter, Surf. Coat Technol. 86–87, 102 (1996).

    Google Scholar 

  47. B. A. Wilson and E. D. Case, J. Mater. Sci. 32, 1363 (1997).

    Google Scholar 

  48. T. K. Gupta, J. Am. Ceram. Soc. 59, 259 (1976).

    Google Scholar 

  49. M. Schütze, Oxid Met. 25, 409 (1986).

    Google Scholar 

  50. R. J. Christensen, V. K. Tolpygo, and D. R. Clarke, Acta. Mater. 45, 1761 ( ).

  51. V. R. Vosberg, D. Clemens, M. G. Berger, W. J. Quadakkers, W. Fischer, and H. Nickel, Fresnius J. Anal. Chem. 358, 127 (1997).

    Google Scholar 

  52. M. J. Lance, J. A. Haynes, W. R. Cannon, and M. K. Ferber, Ceramic Transactions: Nondestructiv e Evaluation of Ceramics, C. H. Schilling and J. N. Gray, eds. (American Ceramic Society, Westerville, OH, 1998), pp. 229-237.

    Google Scholar 

  53. A. H. Heuer, R. M. Cannon, and N. J. Tighe, in Ultrafine-Grain Ceramics, J. J. Burke, N. L. Reed, V. Weiss, eds. (Syracuse University Press, Syracuse, NY, 1968).

    Google Scholar 

  54. J. R. Porter, W. Blumenthal, and A. G. Evans, Acta Met. 29, 1899 (1981).

    Google Scholar 

  55. V. K. Tolpygo and D. R. Clarke, Oxid Met. 49, 187 (1988).

    Google Scholar 

  56. B. A. Pint and I. G. Wright, High Temperature Corrosion and Material Chemistry, E. J. Opila, M. J. McNallan, D. A. Shores, and P. Y. Hou, eds. (Electrochemical Society, Pennington, NJ, 1998), in press.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haynes, J.A., Ferber, M.K., Porter, W.D. et al. Characterization of Alumina Scales Formed During Isothermal and Cyclic Oxidation of Plasma-Sprayed TBC Systems at 1150°C. Oxidation of Metals 52, 31–76 (1999). https://doi.org/10.1023/A:1018870923397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018870923397

Navigation