Skip to main content
Log in

Quantitative elastic modulus measurement by magnetic force modulation microscopy

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

It is experimentally demonstrated that magnetic force modulation microscopy (MFMM) is a technique allowing quantitative elastic modulus measurements. A model of the cantilever–tip–sample interaction taking into account the lateral contact stiffness (i.e., the friction effects at the level of the tip–sample contact), the position of the magnetic force applied to the cantilever with respect to the tip position, as well as the inclination of the cantilever arm with respect to the sample surface is presented. The model shows that MFMM is much less sensitive to lateral force than the other modulation techniques and thus, in contrast to the latter, that the contrast of the stiffness images can be interpreted as a true elasticity contrast and not as a mixture of friction and elasticity. Thanks to the study of the normal contact stiffness versus normal load that allows the characterization of contact between tip and sample, it is possible to perform quantitative elastic modulus measurements with a dynamic modulation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Maivald, H.T. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings and P.K. Hansma, Nanotechnology 2 (1991) 103.

    Google Scholar 

  2. M. Radmacher, R.X. Tillmann and H.E. Gaub, Biophys. J. 64 (1993) 735.

    Google Scholar 

  3. E.L. Florin, M. Radmacher, B. Fleck and H Gaub, Rev. Sci. Instrum. 65 (1994) 639.

    Google Scholar 

  4. U. Rabe and W. Arnold, Appl. Phys. Lett. 64 (1994) 1493.

    Google Scholar 

  5. B. Cretin and F. Sthal, Appl. Phys. Lett. 62 (1993) 829.

    Google Scholar 

  6. K. Yamanaka, H. Ogiso and O. Kolosov, Appl. Phys. Lett. 64 (1994) 178.

    Google Scholar 

  7. N.A. Burnham, A.J. Kulik, P.J. Gallo, G. Gremaud and F. Oulevey, J. Vac. Sci. Technol. B 14 (1996) 794.

    Google Scholar 

  8. N.A. Burnham, G. Gremaud, A.J. Kulik, P.J. Gallo and F. Oulevey, J. Vac. Sci. Technol. B 14 (1996) 1308.

    Google Scholar 

  9. D. Sarid, Scanning Force Microscopy (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  10. U. Rabe, K. Janser and W. Arnold, Rev. Sci. Instrum. 67 (1996) 3281.

    Google Scholar 

  11. P.E. Mazeran and J.L. Loubet, Tribol. Lett. 3 (1997) 125.

    Google Scholar 

  12. M. Troyon, Z. Wang, D. Pastré, H. Lei and A. Hazotte, Nanotechnology 8 (1997) 163.

    Google Scholar 

  13. H. Hertz, J. Reine Angew. Math. 92 (1882) 156.

    Google Scholar 

  14. K.L. Johnson, K. Kendall and A.D. Roberts, Proc. Roy. Soc. London A 324 (1971) 301.

    Google Scholar 

  15. B.V. Derjaguin, V.M. Muller and Y.P. Toporov, J.Colloid Interface Sci. 53 (1975) 314.

    Google Scholar 

  16. D. Maugis, J. Colloid Interface Sci. 150 (1992) 243.

    Google Scholar 

  17. O. Piétrement and M. Troyon, J. Colloid Interface Sci. 226 (2000) 166.

    Google Scholar 

  18. S.P. Jarvis, H. Yamada, S.I. Yamamoto, H. Tokumoto and J.B. Pethica, Nature 384 (1996) 247.

    Google Scholar 

  19. S.I. Yamamoto, H. Yamada, S.P. Jarvis, M. Motomatsu and H. Tokumoto, Mat. Res. Soc. Symp. Proc. 436 (1997) 385.

    Google Scholar 

  20. W.H. Han, S.M. Lindsay and T. Jing, Appl. Phys. Lett. 69 (1996) 4111.

    Google Scholar 

  21. S.I. Yamamoto, T. Ishida, W. Mizutani, H. Tokumoto and H. Yamada, Jpn. J. Appl. Phys. 36 (1997) 3868.

    Google Scholar 

  22. M. Troyon, H. Lei, Z. Wang and G. Shang, Micros. Microanal. Microstruct. 8 (1997) 393.

    Google Scholar 

  23. A. Torii, M. Sasaki, K. Hane and S. Okuma, Meas. Sci. Technol. 7 (1996) 179.

    Google Scholar 

  24. C.T. Gibson, G.S. Watson and S. Myhra, Nanotechnology 7 (1996) 259.

    Google Scholar 

  25. J.L. Hazel and V.V. Tsukruk, Thin Solid Films 339 (1999) 249.

    Google Scholar 

  26. N.A. Burnham and R.J. Colton, J. Vac. Sci. Technol. A 7 (1989) 2906.

    Google Scholar 

  27. P.E. Mazeran and J.L. Loubet, Tribol. Lett. 7 (1999) 199.

    Google Scholar 

  28. J.A. Turner, S. Hirsekorn, U. Rabe and W. Arnold, J. Appl. Phys. 82 (1997) 966.

    Google Scholar 

  29. C. Kittel, W.D. Knight and M.A. Ruderman, Mechanics Berkeley Physics Course, Vol. 1 (McGraw-Hill, New York, 1965).

    Google Scholar 

  30. E. Barthel, J. Colloid Interface Sci. 200 (1998) 7.

    Google Scholar 

  31. R.W. Carpick, D.F. Ogletree and M. Salmeron, J. Colloid Interface Sci. 211 (1999) 395.

    Google Scholar 

  32. J.B. Pethica and W.C. Oliver, Phys. Scripta T 19 (1987) 61.

    Google Scholar 

  33. L. Montelius, J.O. Tegenfeldt and P. van Heeren, J. Vac. Sci. Technol. B 12 (1994) 2222.

    Google Scholar 

  34. D.H. Gracias and G.A. Somorjai, Macromolecules 31 (1998) 1269.

    Google Scholar 

  35. M.F. Ashby and D.R.H. Jones, Matériaux, Vol. 1 (Bordas, Paris, 1991).

    Google Scholar 

  36. R.J. Roark and W.C. Young, Formulas for Stress and Strain (McGraw-Hill, New York, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piétrement, O., Troyon, M. Quantitative elastic modulus measurement by magnetic force modulation microscopy. Tribology Letters 9, 77–87 (2000). https://doi.org/10.1023/A:1018860528388

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018860528388

Navigation