Skip to main content
Log in

Mechanisms of Breakaway Oxidation and Application to a Chromia-Forming Steel

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Breakaway oxidation or chemical failure has beendescribed in this paper in terms of two possiblemechanisms and applied to the behavior of achromia-forming 20Cr-25Ni austenitic steel. Bothmechanisms relate to the depletion of chromium arisingfrom its selective oxidation and quantitative modelingof the depletion profile is used to identify thedominant chemical-failure mechanism as a function oftemperature. Intrinsic Chemical Failure (InCF) develops whenthe chromium concentration within the alloy at theoxide-metal interface is less than that in equilibriumwith chromia. This occurs at high temperatures, typically above 1390 K, but the temperature atwhich the alloy becomes susceptible to this form offailure increases as the alloy grain size decreases. Atlower temperatures, chemical failure is associated with the general depletion of chromium acrossthe specimen section to a level below which reformationof a healing chromia layer will not occur, should thesurface layer become damaged. In this regime, failure is termed Mechanically Induced ChemicalFailure (MICF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Hancock and J. R. Nicholls, Mater. Sci. Technol. 4, 398 (1988).

    Google Scholar 

  2. M. Schütze, Int. J. Pressure Vessels Piping 47, 293 (1991).

    Google Scholar 

  3. H. E. Evans, A. Strawbridge, R. A. Carolan, and C. B. Ponton, Mater. Sci. Eng. A225, 1 (1997).

    Google Scholar 

  4. J. R. Nicholls, H. E. Evans, and S. R. J. Saunders, Mater. High Temp. 14, 5 (1997).

    Google Scholar 

  5. H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster, Oxid. Met. 14, 235 (1980).

    Google Scholar 

  6. H. C. Cowen and S. J. Webster, in Corrosion of Steels in CO2, D. R. Holmes et al., eds. (British Nuclear Energy Society, London, 1974), p. 349.

    Google Scholar 

  7. B. D. Bastow, D. P. Whittle, and G. C. Wood, Oxid. Met. 12, 413 (1978).

    Google Scholar 

  8. W. J. Quadakkers and M. J. Bennett, Mater. Sci. Technol. 10, 126 (1994).

    Google Scholar 

  9. J. P. T. Vossen, P. Gawenda, K. Rahts, M. Rohrig, M. Schorr, and M. Schütze, Mater. High Temp. 14, 387 (1997).

    Google Scholar 

  10. I. G. Wright, B. A. Pint, C. S. Simpson, and P. F. Tortorelli, Mater. Sci. Forum 251– 254, 195 (1997).

    Google Scholar 

  11. H. E. Evans, D. A. Hilton, and R. A. Holm, Oxid. Met. 10, 149 (1976).

    Google Scholar 

  12. A. F. Smith and G. B. Gibbs, Metal Sci. J. 3, 93 (1969).

    Google Scholar 

  13. H. E. Evans and A. T. Donaldson, Oxid. Met., 50, 457 (1998).

    Google Scholar 

  14. R. C. Lobb and H. E. Evans, Materials for Nuclear Reactor Core Applications (British Nuclear Energy Society, London, 1987), p. 335.

    Google Scholar 

  15. R. J. Hussey, D. F. Mitchell, and M. J. Graham, Werkst. Korros. 38, 575 (1987).

    Google Scholar 

  16. P. I. Williams and R. G. Faulkner, J. Mater. Sci. 22, 3537 (1987).

    Google Scholar 

  17. R. C. Lobb and H. E. Evans, in Microscopy of Oxidation, M. J. Bennett and G. W. Lorimer, eds. (Institute of Metals, London, 1991), p. 119.

    Google Scholar 

  18. R. C. Lobb and M. J. Bennett, Oxid. Met. 35, 35 (1991).

    Google Scholar 

  19. H. E. Evans and R. C. Lobb, Corros. Sci. 24, 223 (1984).

    Google Scholar 

  20. O. Kubaschewski, E. Ll. Evans, and C. B. Alcock, Metallurgical Thermochemistry (Pergamon Press, London, 1967).

    Google Scholar 

  21. E. D. Richardson, J. H. E. Jeffes, and G. Withers, J. Iron Steel Inst. 166, 213 (1950).

    Google Scholar 

  22. R. Hales, A. F. Smith, and J. C. Killeen, in Corrosion of Steels in CO2, D. R. Holmes et al., eds. (British Nuclear Energy Society, London, 1974), p. 311.

    Google Scholar 

  23. H. E. Evans, D. A. Hilton, R. A. Holm, and S. J. Webster, Oxid. Met. 12, 473 (1978).

    Google Scholar 

  24. D. Caplan, A. Harvey, and M. Cohen, Corros. Sci. 3, 161 (1963).

    Google Scholar 

  25. D. Caplan and G. I. Sproule, Oxid. Met. 9, 459 (1975).

    Google Scholar 

  26. E. A. Gulbransen and K. F. Andrew, J. Electrochem. Soc. 104, 334 (1957).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, H.E., Donaldson, A.T. & Gilmour, T.C. Mechanisms of Breakaway Oxidation and Application to a Chromia-Forming Steel. Oxidation of Metals 52, 379–402 (1999). https://doi.org/10.1023/A:1018855914737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018855914737

Navigation