Skip to main content
Log in

Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The experimentally observed tensile properties (tensile strength and modulus) of short sisal fibre-reinforced LDPE with different fibre loading have been compared with the existing theories of reinforcement. The macroscopic behaviour of fibre-filled composites is affected by fibre loading, orientation and length of the fibres in the continuous medium. The interfacial adhesion between fibre and matrix also plays a major role in controlling the mechanical properties of the fibre-filled composites. In this study, a comparison is made between experimental data and different theoretical models. Composite models, such as parallel and series, Hirsch, Cox, Halpin–Tsai, modified Halpin–Tsai and modified Bowyer and Bader, have been tried to fit the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. FOLKES, “Short Fibre Reinforced Thermoplastics” (Research Studies Press, Wiley, New York, 1982).

    Google Scholar 

  2. R. P. SHELDON, “Composite Polymeric Materials” (Applied Science, London, 1982) p. 58.

    Google Scholar 

  3. A. KELLY and N. H. MACMILLAN, “Strong Solids” (Clarendon Press, Oxford, 1986) p. 240.

    Google Scholar 

  4. W. BROSTOW and R. D. CORNELIUSSEN, “Failure of Plastics” (Hanser, New York, 1986) p. 443.

    Google Scholar 

  5. D. HULL, “An Introduction to Composite Materials” (Cambridge University Press, London, 1981).

    Google Scholar 

  6. H. L. COX, Br. J. Appl. Phys. 3 (1952) 72.

    Article  Google Scholar 

  7. M. R. PIGGOT, Acta Metall. 14 (1966) 1429.

    Article  Google Scholar 

  8. P. T. CURTIS, M. G. BADER and J. E. BAILEY, J. Mater. Sci. 13 (1978) 377.

    Article  CAS  Google Scholar 

  9. M. R. PIGGOT, “Load Bearing Fibre Composites” (Pergamon Press, Oxford, 1980) p. 100.

    Google Scholar 

  10. Y. TERMONIA, J. Polym. Sci. Polym. Phys. 32 (1994) 969.

    Article  CAS  Google Scholar 

  11. L. MONETTE, M. P. ANDERSON and G. S. GREST, Polym. Compos. 14 (1993) 101.

    Article  CAS  Google Scholar 

  12. G. N. KARAM, J. Compos. Technol. Res. JCTRER 16 (1994) 154.

    Article  CAS  Google Scholar 

  13. I. M. ROBINSON and J. M. ROBINSON, J. Mater. Sci. 29 (1995) 4663.

    Article  Google Scholar 

  14. J. R. SARASUA, P. M. REMIRO and J. POUYET, ibid. 30 (1995) 3501.

    Article  CAS  Google Scholar 

  15. A. KELLY and W. R. TYSON, J. Mech. Phys. Solids 13 (1965) 329.

    Article  CAS  Google Scholar 

  16. K. K. CHAWLA, “Composites in Materials Science and Engineering” (Springer, New York, 1987) p. 177.

    Google Scholar 

  17. H. M. SMALLWOOD, J. Appl. Phys. 15 (1944) 758.

    Article  CAS  Google Scholar 

  18. E. GUTH, ibid. 16 (1945) 20.

    Article  CAS  Google Scholar 

  19. L. H. COHAN, India Rubber World 117 (1947) 343.

    CAS  Google Scholar 

  20. E. H. KERNER, Proc. Phys. Soc. 69B (1956) 808.

    CAS  Google Scholar 

  21. L. E. NIELSON, J. Appl. Phys. 4 (1970) 4626.

    Article  Google Scholar 

  22. L. J. BROUTMAN and R. H. KROCK. “Modern Composite Materials” (Addison Wesley, Reading, MA, 1967).

    Google Scholar 

  23. T. J. HIRSCH, J. Am. Con. Inst. 59 (1962) 427.

    Google Scholar 

  24. C. RADHESH KUMAR, K. E. GEORGE and S. THOMAS, J. Appl. Polym. Sci., 61 (1996) 2383.

    Article  Google Scholar 

  25. S. GEORGE, R. JOSEPH, K. T. VARUGHESE and S. THOMAS, Polymer 36 (1995) 4405.

    Article  CAS  Google Scholar 

  26. B. W. ROSEN, in “Fibre Composite Materials” (American Society for Metals, Metals Park, OH, 1965) p. 58.

    Google Scholar 

  27. J. C. HALPIN and S. W. TSAI, “Environmental Factors in Composite Materials Design” (AFMLTR, 1967) p. 67.

  28. J. R. LAYER and R. R. JUNE, J. Compos. Mater. 3 (1969) 48.

    Google Scholar 

  29. L. E. NIELSON, “Mechanical Properties of Polymers and Composites”, Vol. 2 (Marcel Dekker, New York, 1974).

    Google Scholar 

  30. L. E. NIELSON, Rheol. Acta 13 (1974) 86.

    Article  Google Scholar 

  31. W. H. BOWYER and M. G. BADER, J. Mater. Sci. 7 (1972) 1315.

    Article  CAS  Google Scholar 

  32. M. H. LADIZESKY and I. M. WARD, Compos. Sci. Technol. 26 (1986) 139.

    Google Scholar 

  33. K. JOSEPH, S. THOMAS, C. PAVITHRAN and M. BRAMHAKUMAR, J. Appl. Sci. 47 (1993) 1731.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KALAPRASAD, G., JOSEPH, K., THOMAS, S. et al. Theoretical modelling of tensile properties of short sisal fibre-reinforced low-density polyethylene composites. Journal of Materials Science 32, 4261–4267 (1997). https://doi.org/10.1023/A:1018651218515

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018651218515

Keywords

Navigation