Skip to main content
Log in

Hardness and elastic properties of Bi2O3-based glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hardness and elastic properties of 20PbO · xBi2O3 · (80 − x)B2O3 glasses with x = 20–60 were evaluated through usual Vickers indentation and nanoindentation tests. The glass transition temperature (T g = 295–421°C), Vickers hardness (H v = 2.9–4.5 GPa), true hardness (H = 1.5–3.8 GPa) and Young's modulus (E = 24.4–72.6 GPa) decreased monotonously with increasing Bi2O3 content. This compositional trend demonstrates that the strength of Bi–O chemical bonds in these glasses is considerably weak compared with B–O bonds and plastic deformations under indentation loading occur easily. The elastic recovery after unloading was about 45% for the glasses with x = 20–50, and the Poisson's ratio was 0.27 for the glass with x = 20. The fracture toughness was evaluated to be 0.37–0.88 MPam1/2 from the values of H v and E, and it was proposed that not only weak Bi–O bonds but also boron coordination polyhedra (BO3 or BO4) and their arrangements affect on crack formation. From the temperature dependence of Vickers hardness up to the glass transition region, it was suggested that the glasses with high Bi2O3 contents belong to the category to fragile glass-forming liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. H. Dumbaugh, Phys. Chem. Glasses 27 (1986) 119.

    Google Scholar 

  2. H. Nasu, T. Ito, H. Hase, J. Matsuoka and K. Kamiya, J. Non-Cryst. Solids 204 (1996) 78.

    Google Scholar 

  3. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka and K. Hirao, Opt. Lett. 21 (1996) 1637.

    Google Scholar 

  4. K. Terashima, T. H. Shimoto and T. Yoko, Phys. Chem. Glasses 38 (1997) 211.

    Google Scholar 

  5. S. Tanabe, K. Hirao and N. Soga, J. Non-Cryst. Solids 122 (1990) 79.

    Google Scholar 

  6. Y. G. Choi and J. Heo, ibid. 217 (1997) 199.

    Google Scholar 

  7. A. I. Rabukhin and G. V. Belousova, Glass and Ceramics 49 (1992) 5.

    Google Scholar 

  8. D. S. Sanditov and S. SH. Sangadiev, Glass. Phys. Chem. 24 (1998) 525.

    Google Scholar 

  9. D. M. Marsh, Proc. Roy. Soc. London 282A (1964) 33.

    Google Scholar 

  10. J. E. Neely and J. D. Mackenzie, J. Non-Cryst. Solids 3 (1968) 603.

    Google Scholar 

  11. S. M. Wiederhorn, J. Amer. Ceram. Soc. 52 (1969) 99.

    Google Scholar 

  12. K. W. Peter, J. Non-Cryst. Solids 5 (1970) 103.

    Google Scholar 

  13. C. R. Kurkjian, G. W. Kammlott and M. M. Chaudhri, J. Amer. Ceram. Soc. 78 (1995) 737.

    Google Scholar 

  14. N. Soga, J. Non-Cryst. Solids 52 (1982) 365.

    Google Scholar 

  15. J. H. Westbrook, Phys. Chem. Glasses 1 (1960) 32.

    Google Scholar 

  16. N. Komine, Y. Kawase and A. Obara, Bull. Electrotech. Laboratory (Japan) 27 (1963) 919.

    Google Scholar 

  17. T. Watanabe, Y. Benino, K. Ishizaki and T. Komatsu, J. Ceram. Soc. Japan 107 (1999) 1140.

    Google Scholar 

  18. H. H. Demarest, JR, J. Acous. Soc. Am. 49 (1971) 768.

    Google Scholar 

  19. T. Goto and N. Soga, J. Ceram. Soc. Japan 91 (1983) 35.

    Google Scholar 

  20. C. Stehle, C. Vira, D. Hogan, S. Feller and M. Affatigato, Phys. Chem. Glasses 39 (1998) 83.

    Google Scholar 

  21. F. Miyaji and S. Sakka, J. Non-Cryst. Solids 134 (1991) 77.

    Google Scholar 

  22. M. Janewicz, J. Wasylak and E. Czerwosz, Phys. Chem. Glasses 35 (1994) 169.

    Google Scholar 

  23. B. N. Meera and J. Ramakrishna, J. Non-Cryst. Solids 159 (1993) 1.

    Google Scholar 

  24. J. Sehgal and S. Ito, J. Amer. Ceram. Soc. 81 (1998) 2485.

    Google Scholar 

  25. C. B. Ponton and R. D. Rawlings, Mater. Sci. Tech. 5 (1989) 865.

    Google Scholar 

  26. Japanese Industrial Standards, Report 1607, 1990, p. 7.

  27. G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 64 (1981) 533.

    Google Scholar 

  28. N. Shinkai, R. C. Bradt and G. E. Rindon, ibid. 65 (1982) 123.

    Google Scholar 

  29. G. M. Bartenev, V. A. Lomovskoi, G. M. Sinitsyna and A. G. Barteneva, Glass Phys. Chem. 25 (1999) 390.

    Google Scholar 

  30. T. Watanabe, T. Miura and T. Komatsu, unpublished data.

  31. B. R. Lawn and D. B. Marshall, J. Amer. Ceram. Soc. 62 (1979) 347.

    Google Scholar 

  32. J. Sehgal, Y. Nakao, H. Takahashi and S. Ito, J. Mater. Sci. Lett. 14 (1995) 167.

    Google Scholar 

  33. A. R. Boccaccini, ibid. 15 (1996) 1119.

    Google Scholar 

  34. F. J. B. Calleja, C. S. Cruz, A. G. Arche and E. L. Cabarcos, J. Mater. Sci. 27 (1992) 2124.

    Google Scholar 

  35. F. J. B. Calleja, A. F. F. Ania and D. C. Bassett, ibid. 35 (2000) 1315.

    Google Scholar 

  36. C. A. Angell, J. Non-Cryst. Solids 131/133 (1991) 13.

    Google Scholar 

  37. T. Komatsu, T. Noguchi and R. Sato, J. Amer. Ceram. Soc. 80 (1997) 1327.

    Google Scholar 

  38. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7 (1992) 1564.

    Google Scholar 

  39. R. Y. Lo and D. B. Bogy, ibid. 14 (1999) 2276.

    Google Scholar 

  40. J. L. Loubet, J. M. Georges and G. Meille, in “Microindentation Techniques in Materials Science and Engineering” edited by P. J. Blau and B. R. Lawn (ASTM STP 889, 1986) p. 72.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Komatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, T., Muratsubaki, K., Benino, Y. et al. Hardness and elastic properties of Bi2O3-based glasses. Journal of Materials Science 36, 2427–2433 (2001). https://doi.org/10.1023/A:1017973830342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017973830342

Keywords

Navigation