Skip to main content
Log in

Isolation and characterisation of cDNAs encoding the large and small subunits of ADP-glucose pyrophosphorylase from cassava (Manihot esculenta Crantz)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Screening of a tuber specific cassava cDNA library resulted in the isolation of full length cDNA clones with homology to the genes encoding the small and large subunits of ADP glucose pyrophosphoryalse. Sequence analysis revealed that AGPase B the clone with homology to the small subunit shared 54% homology at amino acid level with the AGPase S clone that is more closely related to the large subunit. Segregation analysis of a cross between the cassava cultivars TMS 30572 and CM 2177-2 revealed that AGPase S is a single copy gene that is localised on the female derived linkage group E of the cassava genetic map. AGPase B is a low copy gene of which one member is localised on the female derived linkage group P. The two genes are expressed in all cassava tissues but AGPase B exhibits a higher steady state mRNA level than AGPase S and is highly expressed in leaf and tuber tissue. The AGPase enzyme activity was much higher in young cassava leaves as compared to older leaves and tubers. Cassava AGPase was activated by 3-PGA and inhibited by up to 90% in the presence of inorganic phosphate (Pi). The tuber enzyme was relatively unaffected by 3PGA but was highly inhibited by Pi. Transformation of potato (Solanum tuberosum) plants with an antisense AGPase B construct resulted in 10 out of 134 antisense AGPase B plants having on average 3.5 times more tubers than the control non transgenic plants. Analysis of these transgenic plants revealed they had greatly reduced levels of AGPase B mRNA, 1.5 to 3 times less starch, and five times higher levels of soluble sugars, sucrose, glucose and fructose, to those found in control plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., W. Gish, W. Miller, E.W. Myers & D.J. Lipman, 1990. Basic local alignment search tool. J Mol Biol 215: 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Bae, J.M., M. Giroux & L.C. Hannah, 1990. Cloning and characterisation of the brittle-2 gene of maize. Maydica 35: 317–322.

    Google Scholar 

  • Bae, J.M. & J.R. Liu, 1997. Molecular cloning and characterisation of two novel isoforms of the small subunit of ADPglucose pyrophosphorylase from sweet potato. Mol Gen Genet 254: 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Bhave, M.R., S. Lawrence, C. Barton & L.C. Hannah, 1990. Identification and molecular characterisation of shrunken-2 cDNA clones of maize. Plant Cell 2: 581–588.

    Article  PubMed  CAS  Google Scholar 

  • Copeland, L. & J. Preiss, 1991. Purification of spinach leaf ADPglucose pyrophosphorylase. Plant Physiol 68: 996–1001.

    Article  Google Scholar 

  • Feinberg, A.P. & B. Volgestein, 1983. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13.

    Article  PubMed  CAS  Google Scholar 

  • Fregene, M., F. Angel, R. Gomez, F. Rodriguez, P. Chavariaga, W. Roca, J. Tohme & M. Bonierbale, 1997. A molecular genetic map of cassava (Manihot esculenta Crantz. Theor Appl Genet 95: 431–441.

    Article  CAS  Google Scholar 

  • Guerineau, F. & P.M. Mullineaux, 1993. Plant transformation and expression vectors. In: R.R.D. Croy (Ed.), Plant Molecular Biology Labfax, pp. 121–148, BIOS Scientific, Oxford.

    Google Scholar 

  • Hannah, L.C., D.M. Tuschall & R.J. Mans, 1980. Multiple forms of maize endosperm ADP-glucose pyrophosphorylase and their control by shrunken-2 and brittle-2. Genetics 95: 961–970.

    PubMed  Google Scholar 

  • Iglesias, A.A, G.F. Barry, C. Meyer, L. Blocksberg, P.A. Nakata, T. Green, M.J. Laughlin, T.W. Okita, G.M. Kishore & J. Preiss, 1993. Expression of the potato tuber ADPglucose pyrophosphorylase in Escherichia coli. J Biol Chem 269: 1081–1086.

    Google Scholar 

  • Kleczkowski, L.A., P. Villand, U. Lüthi, O.A. Olsen & J. Preiss, 1993. Insensitivity of barley endosperm ADP-glucose pyrophosphorylase to 3-phosphoglycerate and orthophosphate regulation. Plant Physiol 101: 179–186.

    Article  PubMed  CAS  Google Scholar 

  • Kuipers, A. 1994. Antisense RNA Mediated Inhibition of Granule Bound Starch Synthase Expression in Potato. PhD Thesis Wageningen Agricultural University, pp. 125.

  • Kuipers, A., J.J. Soppe, E. Jacobsen & R.G.F. Visser, 1995. Factors affecting the inhibition of granule bound starch synthase gene expression in potato via antisense RNA. Mol Gen Genet 246: 745–755.

    Article  PubMed  CAS  Google Scholar 

  • La Cognita, U., L. Willmitzer & B. Müller-Röber, 1995. Molecular cloning and characterization of novel isoforms of potato ADPglucose pyrophosphorylase. Mol Gen Genet 246: 538–548.

    Article  Google Scholar 

  • Lander, E.S., P. Green, J. Abrahamson, A. Barlow, M.J. Daly, S.E. Lincols & L. Newburg, 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.

    Article  PubMed  CAS  Google Scholar 

  • Lin, T.P., T. Caspar, C. Somerville & J. Preiss, 1988. A starch deficient mutant of Arabidopsis thaliana with low ADP-glucose pyrophosphorylase activity lacks one of the two subunits of the enzyme. Plant Physiol 88: 1175–1181.

    PubMed  CAS  Google Scholar 

  • Lloyd, J., F. Springer, A. Buleon, B. Müller-Röber, L. Willmitzer & J. Kossmann, 1999. The influence of alterations in ADP-glucose pyrophosphorylase activities on starch structure and composition in potato tubers. Planta 209: 230–238.

    Article  PubMed  CAS  Google Scholar 

  • Luo, C. & L.A. Kleczkowski, 1999. Expression of barley ADPglucose pyrophosphorylase in Escherichia coli: processing and regulatory considerations. Phytochemistry 50: 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Müller-Röber, B.T., J. Kossmann, L.C. Hannah, L. Willmitzer & U. Sonnewald, 1990. One of two different ADP-glucose pyrophosphorylase genes responds strongly to elevated levels of sucrose. Mol Gen Genet 224: 136–146.

    Article  PubMed  Google Scholar 

  • Müller-Röber, B.T., U. Sonnewald & L. Willmitzer, 1992. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J 11: 1229–1238.

    PubMed  Google Scholar 

  • Munyikwa, T.R.I., C.J.J.M. Raemakers, M. Schreuder, R. Kok, M. Schippers, E. Jacobsen & R.G.F. Visser, 1998. Pinpointing towards improved transformation and regeneration of cassava (Manihot esculenta Crantz. Plant Science 135: 87–101.

    Article  CAS  Google Scholar 

  • Nakamura, Y., Kawaguchi, K. 1992. Multiple forms of ADPglucose pyrophosphorylase of rice endosperm. Physiol Plant 84: 336–342.

    Article  CAS  Google Scholar 

  • Nakata, P.A., T.W. Greene, J.M. Anderson, B.J. Smith-White, T.W. Okita & J. Preiss, 1991. Comparison of the primary structure of two potato tuber ADP-glucose pyrophosphorylase subunits. Plant Mol Biol 17: 1089–1093.

    Article  PubMed  CAS  Google Scholar 

  • Okita, T.W., P.A. Nakata, J.M. Anderson, J. Sowokinos, M. Morell & J. Preiss, 1990. The subunit structure of potato ADP-glucose pyrophosphorylase. Plant Physiol 93: 785–790.

    PubMed  CAS  Google Scholar 

  • Preiss, J., K. Ball, J. Hutney, B. Smith-White, L. Li, & T.W. Okita, 1991. Regulatory mechanisms involved in the biosynthesis of starch. Pure Appl Chem 63: 535–544.

    CAS  Google Scholar 

  • Prioul, J.L., E. Jeanette A. Reyss, N. Gregory, M. Giroux, L.C. Hannah & M. Causse, 1994. Expression of ADPglucose pyrophosphorylase in maize (Zea mays L.) grain and leaf source during grain filling. Plant Physiol 104: 179–187.

    Article  PubMed  CAS  Google Scholar 

  • Röber, M., Geider, K., Müller-Röber B. & L. Willmitzer 1996. Synthesis of fructans in tubers of transgenic starch-deficient potato plants does not result in an increased allocation of carbohydrates. Planta 199: 528–536.

    Article  PubMed  Google Scholar 

  • Salehuzzaman, S.N.I.M., E., Jacobsen & R.G.F. Visser, 1993. Isolation and characterization of cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato. Plant Mol Biol 23: 947–962.

    Article  PubMed  CAS  Google Scholar 

  • Salehuzzaman, S.N.I.M., E. Jacobsen & R.G.F. Visser, 1992. Cloning, partial sequencing and expression of a cDNA coding for branching enzyme in cassava (Manihot esculenta Crantz). Plant Mol Biol 20: 809–819.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., T. Maniatis & E.F. Fritsch, 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbour, New York, Cold Spring Harbour Laboratory.

    Google Scholar 

  • Sanger, F., S. Nicklen & A.R. Coulson, 1977. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  • Smith-White, B.J. & J. Preiss, 1992. Comparison of proteins of ADP-glucose pyrophosphorylase from diverse sources. J Mol Evol 34: 449–464.

    Article  PubMed  CAS  Google Scholar 

  • Villand, P., O.A. Olsen & L.A. Kleczkowski, 1993. Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana. Plant Mol Biol 23: 1279–1284.

    Article  PubMed  CAS  Google Scholar 

  • Visser, R.G.F., 1991. Regeneration and Transformation by Agrobacterium tumefaciens. Plant Tissue Culture Manual B5: 1–9. Kluwer Academic Publishers.

    Google Scholar 

  • Visser, R.G.F., L.C.M. Suurs, P.A.M. Steeneken & E. Jacobsen, 1997. Some physicochemical properties of amylose-free potato starch. Starch/Staerke 49: 443–448.

    CAS  Google Scholar 

  • Weber, H., U. Heim, L. Borisjuk & U. Wobus, 1995. Cell-type, specific coordinate expression of two ADPglucose pyrophosphorylase genes in relation to starch biosynthesis during seed development in Vicia faba L. Planta195: 352–361.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munyikwa, T.R., Kreuze, J., Fregene, M. et al. Isolation and characterisation of cDNAs encoding the large and small subunits of ADP-glucose pyrophosphorylase from cassava (Manihot esculenta Crantz). Euphytica 120, 71–83 (2001). https://doi.org/10.1023/A:1017551520240

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017551520240

Navigation