Skip to main content
Log in

Scale-dependent benthic recolonization dynamics: life stage-based dispersal and demographic consequences

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Soft-sediment recruitment dynamics are dependent upon two sources of colonists; larvae transported from the water column and post-settlement movement of juvenile and/or adult life-stages across the seabed. Differences in the relative dispersal ability of the different life-stages into disturbed patches of habitat should vary predictably with the spatial scale of the disturbance. Smaller patches with a greater edge:surface area ratio should be more influenced by the post-settlement colonist pool than larger patches possessing a smaller edge:surface area ratio. A life stage-based recolonization model, using a Polydora cornuta life table, has been developed to describe how differences in the immigration rates of larvae, juveniles and adults can influence within-patch recovery times. Model results indicate that immigration of adult stages into disturbed patches has the least influence on patch recovery time. In contrast, post-settlement juvenile stages generally has a pronounced effect on patch population dynamics. Experimental evidence of scale-dependent migration of different life-stages to disturbed patches is also presented for the spionid polychaete Boccardia syrtis. Future research on scale-dependent recolonization dynamics in soft-sediment habitats should focus on acquisition of within-patch demographic data in order to more fully understand the importance of post-settlement life-stage movement in regulating population and community dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonsdorff, E., 1980. Macrobenthic recolonization of a dredged brackish water bay in S.W. Finland. Ophelia (suppl.) 1: 145–155.

    Google Scholar 

  • Commito, J. A., S. F. Thrush, R. D. Pridmore, J. E. Hewitt & V. J. Cummings, 1995. Dispersal dynamics in a wind driven benthic system. Limnol. Oceanogr. 40: 1513–1518.

    Article  Google Scholar 

  • Cummings, V. J., R. D. Pridmore, S. F. Thrush & S. F. Thrush, 1995. Post-settlement movement by intertidal benthic macroinvertebrates: Do common New Zealand species drift in the water column? New Zealand J. mar. Freshwat. Res. 29: 59–67.

    Article  Google Scholar 

  • Dayton, P. K. & J. S. Oliver, 1980. An evaluation of experimental analysis of population and community patterns in marine environments. In K. R. Tenore & B. C. Coull (eds), Marine Benthic Dynamics. University of South Carolina Press, (SC): 93–120.

  • Emerson, C. W. & J. Grant, 1992. The control of soft-shell clam (Mya arenaria) recruitment on intertidal sandflats by bedload sediment transport. Limnol. Oceanogr. 36: 1288–1300.

    Google Scholar 

  • Gascon, C. & J. Travis, 1992. Does the spatial scale of experimentation matter? A test with tadpoles and dragonflies. Ecology 73: 2237–2243.

    Article  Google Scholar 

  • Grassle, J. F. & J. P. Grassle, 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. J. mar. Res. 32: 253–284.

    Google Scholar 

  • Gunther, C. 1992. Dispersal of intertidal invertebrates: a strategy to react to disturbances of different scales? Neth. J. Sea Res. 30: 45–56.

    Article  Google Scholar 

  • Hall, S. J., D. Raffaelli & S. F. Thrush, 1994. Patchiness and disturbance in shallow water benthic assemblages. In A. G. Hildrew, P. S. Giller & D. Raffaelli (eds), Aquatic Ecology: Scale, Pattern and Processes. Blackwell Scientific, Oxford, England: 333–375.

    Google Scholar 

  • Hannon, B. & M. Ruth, 1997. Modeling Dynamic Biological Systems. Springer-Verlag, New York: 399 pp.

    Google Scholar 

  • Hanski, I. & M. Gilpin, 1991. Metapopulation dynamics: brief history and conceptual domain. Biol. J. Linnean Soc. 42: 3-16.

    Google Scholar 

  • Johnson, R. G., 1970. Variation in diversity within benthic marine communities. Am. Nat. 104: 285–300.

    Article  Google Scholar 

  • Johnson, R. G., 1973. Conceptual models of benthic marine communities. In T. J. M. Schopf (ed), Models in Paleobiology. Freeman, Cooper (CA): 148–159.

  • Kotliar, N. B. & J. A. Wiens, 1990. Multiple scales of patchiness and patch structure: a hierarchial framework for the study of heterogeneity. Oikos 59: 253–260.

    Google Scholar 

  • Levin, L. A., 1984. Life history and dispersal patterns in a dense infaunal polychaete assemblage: community structure and response to disturbance. Ecology 65: 1185–1200.

    Article  Google Scholar 

  • Levin, L. A. & D. V. Huggett, 1990. Implications of alternative reproductive modes for seasonality and demography in an estuarine polychaete. Ecology 71: 2191–2208.

    Article  Google Scholar 

  • Levins, R., 1970. Extinction. In M. Gertenhaber (ed), Some Mathematical Problems in Biology. Am. Math. Soc. (RI): 77–107.

  • McCall, P. L., 1977. Community patterns and adaptive strategies of the infaunal benthos of Long Island Sound. J. mar. Res. 35: 221–266.

    Google Scholar 

  • Man, A., R. Law & N. V. C. Polunin, 1995. Role of marine reserves in recruitment to reef fisheries: a metapopulation model. Biol. Conserv. 71: 197–204.

    Article  Google Scholar 

  • Pearson, T. H. & R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev. 16: 229–311.

    Google Scholar 

  • Pulliam, H. R., 1988. Sources, sinks and population regulation. Am. Nat. 132: 652–661.

    Article  Google Scholar 

  • Pulliam, H. R. & B. J. Danielson, 1991. Sources, sinks and habitat selection: a landscape perspective on population dynamics. Am. Nat. 137: S50–S66.

    Article  Google Scholar 

  • Quinn, J. F., S. R. Wing & L. W. Botsford, 1993. Harvest refugia in marine invertebrate fisheries: models and applications to the red sea urchin, Strongylocentrotus franciscansus. Am. Zool. 33: 537–550.

    Google Scholar 

  • Rhoads, D. C. & L. F. Boyer, 1982. The effects of marine benthos on physical properties of sediments: A successional perspective. In P. L. McCall & M. J. S. Tevesz (eds), Animal-Sediment Relations. Plenum Publishing (NY): 3–52.

  • Roughgarden, J., Y. Iwasa & C. Baxter, 1985. Demographic theory for an open marine population with space-limited recruitment. Ecology 66: 54–67.

    Article  Google Scholar 

  • Roughgarden, J., S. Gaines & H. Possingham, 1988. Recruitment dynamics in complex life cycles. Science 241: 1460–1466.

    PubMed  CAS  Google Scholar 

  • Savage, W. B. & G. L. Taghon, 1988. Passive and active components of colonization following two types of disturbance on an intertidal sandflat. J. exp. mar. Biol. Ecol. 115: 137–155.

    Article  Google Scholar 

  • Shull, D. H., 1997. Mechanisms of infaunal polychaete dispersal and colonization in an intertidal sandflat. J. mar. Res. 55: 153–179.

    Article  Google Scholar 

  • Smith, C. R & S. J. Brumsickle, 1989. The effect of patch size and substrate isolation on colonization modes and rate in an intertidal sediment. Limnol. Oceanogr. 34: 1263–1277.

    Article  Google Scholar 

  • Snelgrove, P. V. R., 1994. Hydrodynamic enhancement of invertebrate larval settlement in microdepositional environments: colonization tray experiments in a muddy habitat. J. exp. mar. Biol. Ecol. 176: 149–166.

    Article  Google Scholar 

  • Thistle, D., 1981. Natural physical disturbances and the communities of marine soft bottoms. Mar. Ecol. Progr. Ser. 6: 223–228.

    Google Scholar 

  • Thrush, S. F., 1991. Spatial patterns in soft-sediment communities. Trends Ecol. Evol. 6: 75–79.

    Article  Google Scholar 

  • Thrush, S. F., R. B. Whitlatch, R. D. Pridmore, J. E. Hewitt, V. J. Cummings & M. R. Wilkinson, 1996. Scale-dependent recolonization: the role of sediment stability in a dynamic sandflat habitat. Ecology 77: 2472–2487.

    Article  Google Scholar 

  • Van Blaricom, G. R., 1982. Experimental analysis of structural regulation in a marine sand community exposed to oceanic swell. Ecol. Monogr. 52: 283–305.

    Article  Google Scholar 

  • Whitlatch, R. B. & R. W. Osman, 1997. Oyster reefs as metapopulations: approaches for restoring and managing spatially fragmented habitats. In M. Luckenbach, R. Mann & J. Wesson (eds), Oyster Reef Habitat Restoration: A Synopsis and Synthesis of Approaches. Virginia Institute of Marine Sciences Press, Gloucester (VA): in press.

  • Zajac, R. N. & R. B. Whitlatch, 1982. Responses of estuarine infauna to disturbance. I. Spatial and temporal variation of initial recolonization. Mar. Ecol. Prog. Ser. 10: 1–14.

    Google Scholar 

  • Zajac, R. N. & R. B. Whitlatch, 1985. A hierarchial approach to modeling soft-bottom successional dynamics. In P. Gibbs (ed), Proceedings of the 19thEuropean Marine Biological Symposium. Cambridge University Press, Cambridge, England: 265–276.

    Google Scholar 

  • Zajac, R. N. & R. B. Whitlatch, 1989. Natural and disturbanceinduced demographic variation in an infaunal polychaete, Nepthys incisa. Mar. Ecol. Progr. Ser. 57: 89–102.

    Google Scholar 

  • Zajac, R. N. & R. B. Whitlatch, 1991. Demographic aspects of marine, soft sediment patch dynamics. Am. Zool. 31: 808–820.

    Google Scholar 

  • Zajac, R. N., 1991. Population ecology of Polydora ligni(Polychaeta: Spionidae). II. Seasonal demographic variation and its potential impact on life history evolution. Mar. Ecol. Progr. Ser. 77: 207–220.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitlatch, R.B., Lohrer, A.M., Thrush, S.F. et al. Scale-dependent benthic recolonization dynamics: life stage-based dispersal and demographic consequences. Hydrobiologia 375, 217–226 (1998). https://doi.org/10.1023/A:1017084217011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017084217011

Keywords

Navigation