Skip to main content
Log in

Do barnacle larvae respond to multiple settlement cues over a range of spatial scales?

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Numerous physical and biological factors have been identified which affect the probability of larvae settling on hard substrata. The spatial scale at which these factors operate ranges from km's to sub-mm's. The wide variety of cues that barnacle larvae respond to coupled with the subtleties of cue response to factors like surface roughness, suggests that larvae are fastidious in their choice of settlement sites and thus, (i) settlement is not rapid and, (ii) larvae carry out search behaviour to sample settlement cues. An experimental frame with settlement pits untreated or with either barnacle settlement factor, or cyprid settlement factor, or a squashed cyprid larvae were exposed for a duration of 10 minutes during the Semibalanus balanoide settlement season in the Clyde Sea, UK. A total of 102 of the 240 pits were settled within the 10 minutes. More settlement occurred in the chemically treated pits than the untreated pits suggesting that settlement can be both selective and rapid. Video-photography was carried out in the laboratory of the tracks of S. balanoides cyprids prior to settlement in pits. With untreated pits little search behaviour was identified, cyprids tended to encounter the pit and then settle. Pits treated with squashed cyprid showed a chemical cue-mediated behaviour with cyprids tending to slow down and carryout antennular crawling in the vicinity of the pit. The mean time from entering a 40× 40 mm window around the pit and settlement was 24.9 s ( n =11, SE = 5.4). Within the last 1.25 s prior to settlement, cyprids settling in untreated pits moved faster than cyprids settling in CL treated pits (P < 0.01), with a 4 times difference between the mean speeds These data suggest that settlement can be rapid and the pre-settlement track does not necessarily display search behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnes, H., 1955. Further observations on rugophilic behaviour in Balanus balanoides(L.). Vidensk. Medd. fra Dansk naturh. Foren. 117: 341–348.

    Google Scholar 

  • Becker, K., 1993. Attachment strength and colonization patterns of two macrofouling species on substrata with different surface tension (in situ studies). Mar. Biol. 117: 301–309.

    Article  Google Scholar 

  • Bertness, M. D., S. D. Gaines & R. A. Wahle, 1996. Winddriven settlement patterns in the acorn barnacle Semibalanus balanoides. Mar. Ecol. Prog. Ser. 137: 103–110.

    Google Scholar 

  • Bourget, E., 1988. Barnacle larval settlement: The perception of cues at different spatial scales. In M. Vannini & M. Chelazzi (eds), Behavioural adaptations to the intertidal life. Plenum Press, NY.: 153–172.

    Google Scholar 

  • Caffey, H. M., 1982. No effect of naturally-occuring rock types on settlement or survival inthe intertidal barnacle Tesseropora rosea(Krauss). J. exp. mar. Biol. Ecol. 63: 119–132.

    Article  Google Scholar 

  • Chabot, R. & E. Bourget, 1988. Influence of substratum heterogeneity and settled barnacle density on the settlement cypris larvae. Mar. Biol. 97: 45–56.

    Article  Google Scholar 

  • Clare, A. S., R. K. Freet & M. McClary, 1994. On the antennular secretion of the cyprid of Balanus amphitrite amphitrite, and its role as a settlement pheromone. J. mar. biol. Ass. U.K. 74: 243–250.

    Google Scholar 

  • Connell, J. H., 1961. The influence of competition predtaion by Thais lapillusand other factors on natural populations of the barnacle Balanus balanoides. Ecol. Monogr. 31: 61–104.

    Article  Google Scholar 

  • Connell, J. H., 1985. The consequences of variation in initial settlement vs post-settlement mortality in rocky intertidal communities. J. exp. mar. Biol. Ecol. 93: 11–45.

    Article  Google Scholar 

  • Crisp, D. J., 1974. Factors influencing the settlement of marine invertebrate larvae. In P. T. Grant & A. M. Mackie (eds), Chemoreception in marine organisms. Academic Press, London: 177–265.

    Google Scholar 

  • Crisp, D. J. & H. Barnes, 1954. The orientation and distribution of barnacles at settlement with particular reference to surface culture. J. anim. Ecol. 23: 142–162.

    Article  Google Scholar 

  • Dahlem, C., P. J. Moran & T. R. Grants, 1984. Larval settlement of marine sessile invertebrates on surfaces of different colour and position. Ocean Sci. & Eng. 9: 225–236.

    Google Scholar 

  • Dineen, J. F. & A. H. Himes, 1994. Effects of salinity and adult extract on settlement of the oligohaline barnacle Balanus subalbidus. Mar. Biol. 119: 423–430.

    Article  Google Scholar 

  • Gabbot, P. A. & V. N. Larman, 1987. The chemical basis of gregariousness in cirripedes: A review (1953-1984). In A. J. Southward (ed.), Barnacle biology. A. A. Balkema, Rotterdam: 377–388.

    Google Scholar 

  • Grosberg, R. K., 1982. Intertidal zonation of barnacles: the influence of planktonic zonation of larvae on vertical distribution of adults. Ecology 63: 894–899.

    Article  Google Scholar 

  • Hills, J. M. & J. C. Thomason, 1996. A multi-scale analysis of settlement density and pattern dynamics of the barnacle Semibalanus balanoides. Mar. Ecol. Prog. Ser. 138: 103–115.

    Google Scholar 

  • Hills, J. M. & Thomason, J. C., 1998b. On the effect of size, surface area and larval behaviour on recruitment pattern and density of the barnacle (Semibalanus balanoides). Biofouling (in press).

  • Hills, J. M. & J. C. Thomason, 1998a. The effect of scales of surface roughness on the settlement of barnacle (Semibalanus balanoides) cyprids. Biofouling 12: 57–69.

    Article  Google Scholar 

  • Holmes, S. P., C. J. Sturgess & M. S. Davies, 1997. The effect of rock-type on the settlement of Balanus balanoides (L.) cyprids. Biofouling 11: 137–147.

    Google Scholar 

  • Hui, E. & J. Moyse, 1987. Settlement patterns and competition for space. In A. J. Southward (ed.), Barnacle biology. A.A. Balkema, Rotterdam: 363–376.

    Google Scholar 

  • Keough, M. J. & P. T. Raimondi, 1996. Responses of settling larvae to bioorganic films: Effects of large-scale variation in films. J. exp. mar. Biol. Ecol. 207: 59–78.

    Article  Google Scholar 

  • Knight-Jones, E. W. & D. J. Crisp, 1953. Gregariousness in barnacles in relation to the fouling of ships and to antifouling research. Nature 171: 1109–1110.

    Article  PubMed  CAS  Google Scholar 

  • Larman, V. N. & P. A. Gabbot, 1975. Settlement of cyprid larvae of Balanus balanoides and Elminius modestus induced by extracts of adult barnacles and other marine animals. J. mar. biol. Ass. U.K. 55: 183–190.

    Article  Google Scholar 

  • Lewis, C. A., 1978. A review of substratum selection in free-living and symbiotic cirripeds. In F. S. Chia & M. E. Rice (eds), Settlement and metamorphosis of marine invertebrate larvae. Elsevier, NY. 207–218.

    Google Scholar 

  • Le Tourneux, F. & E. Bourget, 1988. Importance of physical and biological settlement cues used at different sptial scales by the larvae of Semibalanus balanoides. Mar. Biol. 97: 57-66.

    Article  Google Scholar 

  • Maki, J. S., D. Rittschof, J. D. Costlow & R. Mitchell, 1988. Inhibition of attachment of larval barnacles, Balanus amphritrite, by bacterial surface films. Mar. Biol. 97: 199–206.

    Article  Google Scholar 

  • Minchinton, T. E. & R. E. Scheibling, 1991. The influence of larval supply and settlement on the population structure of barnacles. Ecology 72: 1867–1879.

    Article  Google Scholar 

  • Miron, G., B. Boudreau & E. Bourget, 1995. Use of larval supply in benthic ecology: testing correlations between larval supply and larval settlement. Mar. Ecol. Prog. Ser. 124: 301–305.

    Google Scholar 

  • Miron, G., E. Bourget & P. Archambault, 1996. Scale of observation and distribution of adult conspecifics: their influence in assessing passive and active settlement mechanisms in the barnacle Balanus crenatus(Brugiè re). J. exp. mar. Biol. Ecol. 201: 137–158.

    Article  Google Scholar 

  • Moore, P. G. & Y. M. Wong, 1995. Activity and trapping characteristics in the field of Orchomene nanus(Krø yer) (Amphipoda: Lysianassoidea) at Millport, Scotland. J. exp. mar. Biol. Ecol 189: 143–157.

    Article  Google Scholar 

  • Mullineaux, L. S. & C. A. Butman, 1991. Initial contact, exploration and attachment of barnacle (Balanus amphitrite) cyprids settling in flow. Mar. Biol. 110: 93–103.

    Article  Google Scholar 

  • Mullineaux, L. S. & E. D. Garland, 1993. Larval recruitment in response to manipulated field flows. Mar. Biol. 116: 667–683.

    Article  Google Scholar 

  • Noda, T. & S. Nakao, 1996. Multi-scale spatial pattern of recruitment in the barnacles Semibalanus cariosuson the Kameda peninsula, southern Hakkaido, Japan. Hydrobiologia 324: 125–130.

    Article  Google Scholar 

  • O'Connor, N. J. & D. L. Richardson, 1994. Comparative attachment of barnacle cyprids (Balanus amphitriteDarwin 1854; B. improvisusDarwin 1854; & B. eburneusGould 1841) to polystryene and glass substrata. J. exp. mar. Biol. Ecol. 183: 213–225.

    Article  Google Scholar 

  • Pineda, J., 1994. Spatial and temporal patterns in barnacle settlement rate along a southern California rocky shore. Mar. Ecol. Prog. Ser. 107: 125–138.

    Google Scholar 

  • Raimondi, P. T., 1990. Patterns, mechanisms, consequences of variability in settlement and recruitment of an intertidal barnacle. Ecol. Monog. 60: 283–309.

    Article  Google Scholar 

  • Rittschof, D., E. S. Branscomb & J. D. Costlow, 1984. Settlement and behaviour in relation to flow and surface in larval barnacles, Balanus amphitriteDarwin. J. exp. mar. Biol. Ecol. 82: 131–146.

    Article  Google Scholar 

  • Thomason, J. C., J. M. Hills, A. S. Clare, A. Neville & M. Richardson, 1998. Hydrodynamic consequences of barnacle colonisation on hard substrata. Hydrobiol. (this volume).

  • Varley, M. J., M. J. W. Copland, S. D. Wratten & M. H. Bowie, 1993. Parasites and predators. In S. D. Wratten (ed.), Video techniques in animal ecology and behaviour. Chapman & Hall, London: 33–63.

    Google Scholar 

  • Voris, H. K., W. B. Jefferies & S. Poovachiranon, 1994. Patterns of distribution of two barnacle species on the mangrove crab, Scylla serrata. Biol. Bull. 187: 346–354.

    Google Scholar 

  • Walker, G. & A. B. Yule, 1984. Temporary adhesion of the barnacle cyprid: the existence of an antennular adhesive secretion. J. mar. biol. Ass. U.K. 64: 679–686.

    Google Scholar 

  • Walters, L. J. & D. S. Wethey, 1996. Settlement and early postsettlement survival of sessile invertebrates on topographically complex surfaces: the importance of refuge dimensions and adult morphology. Mar. Biol. Prog. Ser. 137: 161–171.

    Google Scholar 

  • Weissburg, M. & R. K. Zimmer-Faust, 1991. Effects of chemoreception and hydrodynamics in mediating predation. Am. Zool. 31: 103.

    Google Scholar 

  • Wethey, D. S., 1984. Spatial pattern in barnacle settlement: day to day changes during the settlement season. J. Mar. Biol. Ass. UK 64: 687–698.

    Google Scholar 

  • Yen, J. & J. R. Strickler, 1996. Advertisment and concealment in the plankton-what makes a copepod hydrodynamically conspicuous. Invert. Biol. 115: 191–205.

    Article  Google Scholar 

  • Yule, A. B. & D. J. Crisp, 1983. Adhesion of cypris larvae of the barnacle Balanus balanoides, to clean and arthropodin treated surfaces. J. mar. biol. Ass. U.K. 63: 261–271.

    Article  Google Scholar 

  • Yule, A. B. & G. Walker, 1985. Settlement of Balanus balanoides: the effect of cyprid antennular secretion. J. mar. biol. Ass. U.K. 65: 707–712.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hills, J.M., Thomason, J.C., Milligan, J.L. et al. Do barnacle larvae respond to multiple settlement cues over a range of spatial scales?. Hydrobiologia 375, 101–111 (1998). https://doi.org/10.1023/A:1017029627006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017029627006

Navigation