Skip to main content
Log in

Flavonoid Production in Transformed Scutellaria baicalensis Roots and Ways of Its Regulation

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

A root culture of skullcap (Scutellaria baicalensisGeorgi) transformed with pRi T-DNA was initiated by the inoculation of sterile seedlings with Agrobacterium rhizogenes(wild-type strain A-4). The flavonoid concentration in cultured roots comprised 5% of the root dry weight and was maintained essentially constant during a subculture. For four weeks of culturing, the weight of the roots increased by 20–30 times; when the roots were cultured for a longer time and with periodic enrichment of the nutrient medium, their weight increased 50-fold. Skullcap roots were shown to synthesize flavones characteristic of intact roots (wogonin, baicalein, and baicalin). The addition of 0.01–1 mM L-phenylalanine (a precursor of flavonoids) to the nutrient medium affected neither root growth, nor their flavonoid concentration. Root elicitation with 100 μM methyl jasmonate for 72 h increased the flavonoid content per flask and per root dry weight by 1.8 and 2.3 times, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Atlas arealov i resursov lekarstvennykh rastenii SSSR (Atlas of Medicinal Plant Areas and Resources of the USSR), Moscow: Mir, 1976.

  2. Turova, A.D., Lekarstvennye rasteniya SSSR i ikh primenenie (Medicinal Plants of the USSR and Their Application), Moscow: Meditsyna, 1967.

    Google Scholar 

  3. Kubo, M., Kimura, Y., Odani Tani, T., and Namba, K., Studies on Scutellaria radix. Part 2: The Antibacterial Substance, Planta Med., 1981, vol. 43, pp. 194-201.

    Google Scholar 

  4. Tang, W. and Eisenbrand, G., Chinese Drugs of Plant Origin. Chemistry, Pharmacology, and Use in Traditional and Modern Medicine, Berlin: Springer-Verlag, 1992, pp. 919-935.

    Google Scholar 

  5. Konoshima, T., Kokumai, M., Kozuka, M., Inuma, M., Mizuno, M., Tanaka, T., Tokuda, H., Noshino, H., and Iwashima, A., Studies on Inhibitors of Skin Tumor Promotion: 9. Inhibitory Effects of Flavonoids from Scutellaria baicalensis on Epstein-Barr Virus: Activation and Their Anti-Tumor-Promoting Activities, Chem. Pharm. Bull., 1992, vol. 40, pp. 531-533.

    Google Scholar 

  6. Razina, T.G., Litvinenko, V.I., Popova, T.P., and Goldberg, E.D., The Effect of Extracts from Scutellaria baicalensis Stems and Leaves on the Efficiency of Chemotherapy of Experimentally-Induced Tumors, Rastit. Resur., 1993, vol. 3, pp. 90-94.

    Google Scholar 

  7. Chemesova, I.I., Flavonoids of Plant Species from the Genus Scutellaria L., Rastit. Resur., 1993, vol. 2, pp. 89-99.

    Google Scholar 

  8. Goldberg, E.D., Dygai, A.M., Litvinenko, V.I., Popova, T.P., and Suslov, N.I., Shlemnik baikal'skii. Fitokhimiya i farmakologicheskie svoistva (Skullcap ( Scutellaria baicalensis ): Phytochemistry and Pharmacological Properties), Tomsk: Izd. Tomsk. Univ., 1994.

    Google Scholar 

  9. Kimura, Y., Okuda, H., Yokoi, K., and Matsushita, N., Effects of Baicalein Isolated from Roots of Scutellaria baicalensis Georgi on Interleukin 1β-and Tumor Necrosis Factor α-Induced Tissue-Type Plasminogen Activator and Plasminogen Activator-1 Production in Cultured Human Umbilical Vein Endothelial Cells, Phytotherapy Res., 1997, vol. 11, pp. 363-367.

    Google Scholar 

  10. Yamamoto, H., Chatani, N., Kitayama, A., and Tomimuri, T., Flavonoid Production in Scutellaria baicalensis Callus Cultures, Plant Cell, Tissue Organ Culture., 1986, vol. 5, pp. 219-222.

    Google Scholar 

  11. Yamamoto, H., Scutellaria baicalensis Georgi: In vitro Culture and the Production of Flavonoids, Biotechnology and Agriculture and Forestry, vol. 15, Medicinal and Aromatic Plants III, Bajaj, Y.P.S., Ed., Berlin: Springer-Verlag, 1989, pp. 398-418.

    Google Scholar 

  12. Seo, W.T., Park, Y.H., and Choe, T.B., Identification and Production of Flavonoids in a Cell Suspension Culture of Scutellaria baicalensis Georgi, Plant Cell Rep., 1993, vol. 12, pp. 414-417.

    Google Scholar 

  13. Zhou, Y., Hirotati, M., Yoshikawa, T., and Furuya, T., Flavonoids and Phenylethanoids from Hairy Root Cultures of Scutellaria baicalensis, Phytochemistry, 1997, vol. 44, pp. 83-87.

    Google Scholar 

  14. Nishikawa, K. and Ishimaru, K., Flavonoids in Root Cultures of Scutellaria baicalensis, J. Plant Physiol., 1997, vol. 151, pp. 633-636.

    Google Scholar 

  15. Smirnov, A.M., Rost i metabolizm izolirovannykh kornei v steril'noi kul'ture (Growth and Metabolism of Excised Roots in Axenic Culture), Moscow: Nauka, 1970.

    Google Scholar 

  16. Murashige, T. and Skoog, F., A Revised Medium for Rapid Growth and Bioassay with Tobacco Tissue, Physiol. Plant., 1962, vol. 15, pp. 473-479.

    Google Scholar 

  17. Petit, A., David, C., Dahl, G.A., Ellis, J.G., Quyon, P., Casse-Delbart, F., and Tempe, J., Further Extension of the Opine Concept Cooperate for Opine Degradation, Mol. Gen. Genet., 1983, vol. 190, pp. 204-214.

    Google Scholar 

  18. Gamborg, O.L., Miller, R.A., and Ojima, K., Nutrient Requirements of Suspension Cultures of Soybean Root Cells, Exp. Cell Res., 1968, vol. 50, pp. 151-158.

    Google Scholar 

  19. Wagner, H., Bladt, S., and Zgainski, E.M., Drogenanalyse: Dünnschicht chromatographische Analyse von Arzneidrogen, Berlin: Springer-Verlag, 1983.

    Google Scholar 

  20. Mabry, T.J., Markham, K.R., and Thomas, M.B., The Systematic Identification of Flavonoids, Berlin: Springer-Verlag, 1970.

    Google Scholar 

  21. Qualitative und quantitative Flavonoid-Bestimmung am Beispiel Betula folium, Crataegus folium Flore und weiterer Flavonoid-Drogen, Europäisches Arzneibuch, Amtliche Deutsche Ausgabe, Struttgart: Deutscher Apotheker, 1999, pp. 263-270.

  22. Kuzovkina, I., Guseva, A., Petereit, F., Lechtenberg, M., and Nahrstedt, A., Scutellaria baicalensis Georgi: Flavonoids of Genetically Transformed Roots, Fitoterapia, 2001 (in press).

  23. Kutchan, T.M., 12-Oxo-Phytodienoic Acid Induces Accumulation of Berberine Bridge Enzyme Transcript in a Manner Analogous to Methyl Jasmonate, J. Plant Physiol., 1993, vol. 142, pp. 502-505.

    Google Scholar 

  24. Gross, D. and Parthier, B., Novel Natural Substances Acting in Plant Growth Regulation, J. Plant Growth Regul., 1994, vol. 13, pp. 93-114.

    Google Scholar 

  25. Buitelaar, R.M., Cesario, M.T., and Tramper, J., Elicitation of Thiophene Production by Hairy Roots of Tagetes patula, Enzyme, Microb. Technol., 1992, vol. 14, pp. 2-7.

    Google Scholar 

  26. Neill, S.J., Lenton, J.R., and Wibberley, M.S., Differential Effects of Elicitors on Secondary Metabolism in Hairy Root Cultures of Tobacco, Biochem. Soc. Trans., 1994, vol. 22, pp. 383-388.

    Google Scholar 

  27. Mantrova, O.V., Dunaeva, M.V., Kuzovkina, I.N., Schneider, B., and Müller-Uri, F., Effect of Methyl Jasmonate on Anthraquinone Biosynthesis in Transformed Madder Roots, Fiziol. Rast. (Moscow), 1999, vol. 46, pp. 292-295 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzovkina, I.N., Guseva, A.V., Alterman, I.E. et al. Flavonoid Production in Transformed Scutellaria baicalensis Roots and Ways of Its Regulation. Russian Journal of Plant Physiology 48, 448–452 (2001). https://doi.org/10.1023/A:1016739010716

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016739010716

Navigation