Skip to main content
Log in

Interactions of three eco-types of Acidithiobacillus ferrooxidans with U(VI)

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

The interaction of uranium with cells of three recently described eco-types of Acidithiobacillus ferrooxidans recovered from uranium mining wastes was studied. The uranium sorption studies demonstrated that the strains from these types possess different capabilities to accumulate and tolerate uranium. The amount of uranium biosorbed by all A. ferrooxidans strains increased with considerable concentrations. We have found that the representatives of type II accumulate significantly higher amounts of uranium in comparison to the other A. ferrooxidans strains. The investigations of the tolerance to uranium showed that the types I and III are resistant to 8 and 9 mM of uranium respectively, whereas the type II does not tolerate more than 2 mM of uranium. The recovery of the accumulated uranium by desorption was investigated using various desorbing agents as sodium carbonate, sodium citrate and EDTA at different concentrations. Sodium carbonate was the most efficient desorbing agent, removing 97% of the uranium sorbed from the cells of A. ferrooxidans type III, and 88.33 and 88.50% from the cells of the types I and II, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Asheh S, Duvnjak Z. 1995 Adsorption of copper and chromium by Aspergillus carbonarius. Biotechnol Prog 11, 638–642.

    Google Scholar 

  • Beveridge TJ, Koval SF. 1981 Binding of metals to cell envelopes of Escherichia coli K12. Appl Environ Microbiol 42, 325–335.

    Google Scholar 

  • Bond PL, Druschel GK, Banfield JF. 2000 Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66, 4962–4971.

    Google Scholar 

  • Cunningham DP, Lundie LL Jr. 1993 Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59, 7–14.

    Google Scholar 

  • DiSpirito AA, Talnagi JW Jr, Tuovinen OH. 1983 Accumulation and cellular distribution of uranium in Thiobacillus ferrooxidans. Arch Microbiol 135, 250–253.

    Google Scholar 

  • DiSpirito AA, Tuovinen OH. 1982 Kinetics of uranous ion and ferrous iron oxidation by Thiobacillus ferrooxidans. Arch Microbiol 133, 33–37.

    Google Scholar 

  • Doyle RJ, Matthews TH, Streips UN. 1980 Chemical basis for selectivity of metal ions by Bacillus subtilis cell wall. J Bacteriol 143, 471–480.

    Google Scholar 

  • Ehrlich HL. 1996 Geomicrobiology. New York: Dekker.

    Google Scholar 

  • Ehrlich HL. 1997 Microbes and metals. Appl Microbiol Biotechnol 48, 687–692.

    Google Scholar 

  • Ehrlich HL, Brierley CL. 1990 Microbial mineral recovery. New York: McGraw-Hill.

    Google Scholar 

  • Ferris FG, Beveridge TJ. 1984 Binding of a paramagnetic metal cation of Escherichia coli K-12 outer membrane vesicles. FEMS Microbiol Lett 24, 43–46.

    Google Scholar 

  • Ferris FG, Beveridge TJ. 1986 Site specificity of metallic ion binding in of Escherichia coli K-12 lipopolysaccharide. Can J Microbiol 32, 52–55.

    Google Scholar 

  • Flemming K, Kutschke S, Tzvetkova T, Selenska-Pobell S. 2000 Intraspecies diversity of Thiobacillus ferrooxidans strains recovered from uranium wastes. Report FZR 285, 51.

    Google Scholar 

  • Fortin D, Roy M, Rioux JP, Thibault PJ. 2000 Occurrence of sulfatereducing bacteria under a wide range of physico-chemical conditions in Au and Cu-Zn mine tailings. FEMS Microbiol Ecol 33, 197–208.

    Google Scholar 

  • Francis AJ. 1998 Biotransformation of uranium and other actinides in radioactive wastes. J Alloys Compounds 271–273, 78–84.

    Google Scholar 

  • Gadd GM. 1988 Accumulation of metals by microorganisms and algae. In: Rehm HJ, ed. Biotechnology. Veinheim; 401–433.

  • González-Muñoz MT, Merroun ML, Ben Omar N, Arias JM. 1997 Biosorption of uranium by Myxococcus xanthus. Int Biodet Biodeg 40 107–114.

    Google Scholar 

  • Hennig C, Panak PJ, Reich T, Roßberg A, Raff J, Selenska-Pobell S, Matz W, Bucher JJ, Bernhard G, Nitsche H. 2001 EXAFS investigation of uranium(VI) complexes formed at Bacillus cereus and Bacillus sphaericus surfaces. Radiochim Acta (in press).

  • Johnson DB. 1998 Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27, 307–317.

    Google Scholar 

  • Kutschke S, Selenska-Pobell S. 2000 Classification and genomic fingerprinting of several natural Thiobacillus ferrooxidans isolates recovered from a uranium mining waste pile. Report FZR 285, 54.

    Google Scholar 

  • Langley S, Beveridge TJ. 1999 Effect of O-side-chainlipopolysaccharide chemistry on metal binding. Appl Environ Microbiol 65, 489–498.

    Google Scholar 

  • Leduc LG, Ferroni GD. 1993 The need for Thiobacillus ferrooxidans strain selection in applications of bioleaching. In: Gould WD, Lortie L, Rodrigue D, eds. BIOMINET Proceedings. Canada: Mineral Resources; 25–42.

    Google Scholar 

  • Leduc LG, Ferroni GD, Trevors JT. 1997 Resistance to heavy metals in different strains of Thiobacillus ferrooxidans. World J Microbiol Biotechnol 13, 453–455.

    Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa ER. 1991 Microbial reduction of uranium. Nature 350, 413–416.

    Google Scholar 

  • Luef E, Prey T, Kubicek CP. 1991 Biosorption of zinc by fungal mycelial wastes. App Microbiol Biotechnol 34, 688–692.

    Google Scholar 

  • Macaskie LE, Dean ACR. 1984 Uranium accumulation by immobilized cells of a Citrobacter sp. Biotechnol Lett 7, 457–460.

    Google Scholar 

  • Macaskie LE, Yong P, Doyle TC, Roig MG, Diaz M, Manzano T. 1997 Bioremediation of uranium-bearing wastewater: biochemical factors influencing bioprocess application. Biotechnol Bioeng 53, 100–109.

    Google Scholar 

  • Marqués AM, Roca X, Simon-Pujol MD, Fuste MC, Congregado F. 1991 Uranium accumulation by Pseudomonas sp. EPS-5028. Appl Microbiol Biotechnol 35, 406–410.

    Google Scholar 

  • Merroun ML, Reich T, Hennig C, Selenska-Pobell S. 2000a EXAFS investigation of uranium (VI) complexes formed at Acidithiobacillus ferrooxidans types. Second Euroconference and NEA Workshop on Speciation, Techniques, and Facilities for Radioactive Materials at Synchrotron Light Sources, 10–12 September, Grenoble, France.

  • Merroun ML, Flemming K, Selenska-Pobell S. 2000b Microdiverse types of Acidithiobacillus ferrooxidans and their interactions with uranium. 2nd International Biometals Symposium ‘Biometals 2000’, 24–29 April, Tübingen, Germany.

  • Merroun ML, Tzvetkova T, Selenska-Pobell S. 2000c Complexation of uranium by three different Acidithiobacillus ferrooxidans types. 2nd Euroconference on Bacterial-Metal/Radionuclide Interaction: Basic Research and Bioremediation, August 30-September 1, Dresden, Germany.

  • Merroun ML, Selenska-Pobell S. 2000 Microdiverse types of T.ferrooxidans and their interactions with uranium. Report FZR 285, 53.

    Google Scholar 

  • Nakajima A, Sakaguchi T. 1986 Selective bioaccumulation of heavy metals by microorganisms. Appl Environ Biotechnol 24, 59–64.

    Google Scholar 

  • Norris PR, Barr DW, Hinson D. 1988 Iron and mineral oxidation by acidophilic bacteria: affinities for iron and attachment to pyrite. In: Norris PR, Kelly DP, eds. Biohydrometallurgy: Proceedings of the International Symposium, Warwick 1987. Science and Technology Letters: Kew: UK; 43–59.

    Google Scholar 

  • Panak P, Selenska-Pobell S, Kutschke S, Geipel G, Bernhard G, Nitsche H. 1999 Complexation of U(VI) with cells of Thiobacillus ferrooxidans and Thiomonas cuprina of different geological origin. Radiochim Acta 84, 183–190.

    Google Scholar 

  • Peng JB, Yan WM, Bao XZ. 1994 Solid medium for the genetic manipulation of Thiobacillus ferrooxidans. J Gen Appl Microbiol 40, 243–253.

    Google Scholar 

  • Rawlings DE, Silver S. 1995 Mining with microbes. Bio/Technology 13, 773–778.

    Google Scholar 

  • Rawlings DE, Tributsch H, Hansford GS. 1999 Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145, 5–13.

    Google Scholar 

  • Rossbach S, Wilson TL, Kukuk ML, Carty HA. 2000 Elevated zinc induces siderophore biosynthesis genes and a znt A-like gene in Pseudomonas fluorescens. FEMS Microbiol Lett 191, 61–70.

    Google Scholar 

  • Selenska-Pobell. 2001 Diversity and Activity of bacteria in uranium waste piles. In: Keith-Roach M, Livens F, eds. Microbiology and Radioactivity. Oxford: Elsevier Sciences (in press).

    Google Scholar 

  • Selenska-Pobell S, Flemming K, Kampf G, Radeva G, Satchanska G. 2001 Bacterial diversity in soil samples from two uranium waste piles as determined by rep-ARD, RISA and the 16S rDNA retrieval. Antonie van Leewenhuek (in press).

  • Selenska-Pobell S, Flemming K, Radeva G. 2000 Direct detection and discrimination of different Thiobacillus ferrooxidans types in soil samples of a uranium waste pile. Report FZR 285, 52.

    Google Scholar 

  • Shuttleworth KL, Unz RF. 1993 Sorption of heavy metals to the filamentous bacterium Thiothrix Strain A1. Appl Environ Microbiol 59, 1274–1282.

    Google Scholar 

  • Silver S, Phung LT. 1996 Bacterial heavy metal resistance: New surprises. Ann Rev Microbiol 50, 753–789.

    Google Scholar 

  • Silverman MP, Lundgren DG. 1959 Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. J Bacteriol 77, 642–647.

    Google Scholar 

  • Simmons P, Tobin JM, Singleton I. 1995 Considerations on the use of commercially available yeast biomass for the treatment of metal-containing effluents. J Ind Microbiol 14, 240–246.

    Google Scholar 

  • Tuovinen OH, Kelly DP. 1974 Studies on the growth of Thiobacillus ferooxidans II. Toxicity of uranium to growing cultures and tolerance conferred by mutation, other metal cations and EDTA. Arch Microbiol 95, 153–164.

    Google Scholar 

  • Volesky B. 1990 Removal and recovery of heavy metals by biosorption. In: Volesky B, ed. Biosorption of heavy metals. Boca Raton, Florida: CRC Press; 7–44.

    Google Scholar 

  • Volesky B, Holan ZR. 1995 Biosorption of heavy metals. Biotechnol Prog 11, 235–250.

    Google Scholar 

  • Volesky B, May-Phillips HA. 1995 Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42, 797–806.

    Google Scholar 

  • Yang J, Volesky B. 1999 Biosorption and elution of uranium with seaweed biomass. Proceedings of the IBS 99, Madrid, Spain.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Larbi Merroun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merroun, M.L., Selenska-Pobell, S. Interactions of three eco-types of Acidithiobacillus ferrooxidans with U(VI). Biometals 14, 171–179 (2001). https://doi.org/10.1023/A:1016658209397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016658209397

Navigation