Skip to main content
Log in

Is the Universe Really That Simple?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The intriguing recent suggestion of Tegmark that the universe—contrary to all our experiences and expectations—contains only a small amount of information due to an extremely high degree of internal symmetry is critically examined. It is shown that there are several physical processes, notably Hawking evaporation of black holes and non-zero decoherence time effects described by Plaga, as well as thought experiments of Deutsch and Tegmark himself, which can be construed as arguments against the low-information universe hypothesis. Some ramifications for both quantum mechanics and cosmology are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. W. Rindler, “Visual horizons in world-models,” Monthly Notices of the Royal Astronomical Society 116, 662 (1956).

    Google Scholar 

  2. A. W. K. Metzner and P. Morrison, “The flow of information in cosmological models,” Monthly Notices of the Royal Astronomical Society 119, 657 (1959).

    Google Scholar 

  3. J. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7, 2333 (1973); “Energy cost of information transfer,” Phys. Rev. Lett. 46, 623 (1981).

    Google Scholar 

  4. S. W. Hawking, “Breakdown of predictability in gravitational collapse,” Phys. Rev. D 14, 2460 (1976).

    Google Scholar 

  5. R. A. Treumann, “Evolution of the information in the universe,” Astrophys. Space Sci. 201, 135 (1993).

    Google Scholar 

  6. F. C. Adams and G. Laughlin, “A dying universe: The long-term fate and evolution of astrophysical objects,” Rev. Mod. Phys. 69, 337-372 (1997); The Five Ages of the Universe (Free Press, New York, 1999).

    Google Scholar 

  7. F. J. Tipler, “Cosmological limits on computation,” Int. J. Theor. Phys. 25, 617 (1986). L. M. Krauss and G. D. Starkman, “Life, the universe, and nothing: Life and death in an ever-expanding universe,” Astrophys. J. 531, 22 (2000).

    Google Scholar 

  8. J. Bekenstein, “How fast does information leak out from a black hole?” Phys. Rev. Lett. 70, 3680 (1993).

    Google Scholar 

  9. S. Lloyd, “Ultimate physical limits to computation,” Nature 406, 1047 (2000); see also S. Lloyd and H. Pagels, “Complexity as thermodynamical depth,” Ann. Phys. 188, 186 (1988).

    Google Scholar 

  10. Y. J. Ng, “From computation to black holes and space-time foam,” Phys. Rev. Lett. 86, 2946 (2001).

    Google Scholar 

  11. N. Bostrom, “Are you living in a simulation?” forthcoming (preprint available at http://www.nickbostrom.com/sim/simulation.doc, 2001); see also J. Schmidhuber, “A computer scientist's view of life, the universe, and everything,” in C. Freksa, ed., Foundations of Computer Science: Potential-Theory-Cognition (Springer, New York, 1997). R. Hanson, “How to live in a simulation,” J. of Evol. Tech., forthcoming (preprint at http://hanson.gmu.edu/lifeinsim.html, 2001).

  12. M. Tegmark, “Does the universe in fact contain almost no information?” Found. Phys. Lett. 9, 25 (1996); preprint quant-ph/9603008.

    Google Scholar 

  13. H. Everett III, “‘Relative state’ formulation of quantum mechanics,” Rev. Mod. Phys. 29, 454 (1957).

    Google Scholar 

  14. E. Squires, The Mystery of the Quantum World (Institute of Physics Publishing, Bristol, 1986).

    Google Scholar 

  15. H. Price, Time's Arrow and Archimedes' Point (Oxford University Press, New York, 1996).

    Google Scholar 

  16. M. Tegmark, “The interpretation of quantum mechanics: many worlds or many words?” Fortschr. Phys. 46, 855 (1998); an early version can be found in Ref. 14.

    Google Scholar 

  17. D. Page, “Can quantum cosmology give observational consequences of many-worlds quantum theory?” lanl preprint quant-ph/9904004 (1999).

  18. D. Deutsch, “Quantum theory as a universal physical theory,” Int. J. Theor. Phys. 24, 1 (1985).

    Google Scholar 

  19. R. Plaga, “Proposal for an experimental test of the many-worlds interpretation of quantum mechanics,” Found. Phys. 27, 559 (1997); see also “An extension of ‘Popper's experiment’ can test interpretations of quantum mechanics,” Found. Phys. Lett. 13, 461 (2000).

    Google Scholar 

  20. G. Belot, J. Earman, and L. Ruetsche, “The Hawking information loss paradox: The anatomy of a controversy,” Brit. J. Philos. of Sci. 50, 189 (1999).

    Google Scholar 

  21. R. Penrose, The Emperor's New Mind (Oxford University Press, Oxford, 1989).

    Google Scholar 

  22. C. B. Collins and S. W. Hawking, “Why is the universe isotropic?” Astrophys. J. 180, 317 (1973).

    Google Scholar 

  23. J. D. Barrow and F. J. Tipler, The Anthropic Cosmological Principle (Oxford University Press, New York, 1986).

    Google Scholar 

  24. G. C. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopics and macroscopic systems,” Phys. Rev. D 34, 470 (1986).

    Google Scholar 

  25. L. Diòsi, “Models for universal reduction of macroscopic quantum fluctuations,” Phys. Rev. A 40, 1165 (1989).

    Google Scholar 

  26. S. Weinberg, “Precision tests of quantum mechanics,” Phys. Rev. Lett. 62, 485 (1989).

    Google Scholar 

  27. J. Polchinski, “Weinberg's nonlinear quantum mechanics and the Einstein-Podolsky- Rosen paradox,” Phys. Rev. Lett. 66, 397 (1991).

    Google Scholar 

  28. See, for example, F. Hoyle and J. V. Narlikar, “Cosmological models in a conformally invariant gravitational theory. I. The Friedmann models,” Monthly Notices of the Royal Astronomical Society 155, 305 (1972).

    Google Scholar 

  29. D. Albert, “The foundations of quantum mechanics and the approach to thermodynamic equilibrium,” Brit. J. Philos. Sci. 45, 669 (1994).

    Google Scholar 

  30. A. C. Elitzur and S. Dolev, “Black-hole uncertainty entails an intrinsic time arrow: A note on the Hawking-Penrose controversy,” Phys. Lett. A 251, 89 (1999); “Black hole evaporation entails an objective passage of time,” Found. Phys. Lett. 12, 309 (1999).

    Google Scholar 

  31. S. B. Giddings, “Black holes and massive remnants,” Phys. Rev. D 46, 1347 (1992).

    Google Scholar 

  32. S. W. Hawking, “The unpredictability of quantum gravity,” Comm. Math. Phys. 87, 395.

  33. L. Smolin, “Did the universe evolve?” Class. and Quantum Grav. 9, 173 (1992).

    Google Scholar 

  34. G. 't Hooft, “The black hole interpretation of string theory,” Nucl. Phys. B 335, 138 (1990).

    Google Scholar 

  35. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “New dimensions at a millimeter to a fermi and superstrings at a TeV,” Phys. Lett. B 436, 257 (1998).

    Google Scholar 

  36. K. R. Dienes, E. Dudas, and T. Gherghetta, “Extra spacetime dimensions and unification,” Phys. Lett. B 436, 55 (1998).

    Google Scholar 

  37. J. L. Borges, Collected Fictions (Penguin, New York, 1999).

    Google Scholar 

  38. K. Gunderson, Mentality and Machines (Anchor Books, Garden City, 1971).

    Google Scholar 

  39. S. C. Shapiro, “Computationalism,” Minds and Machines 5, 517 (1995).

    Google Scholar 

  40. H. Kragh, “The electrical universe: Grand cosmological theory versus mundane experiments,” Perspectives on Science 5, 199 (1997).

    Google Scholar 

  41. H. Bondi and T. Gold, “The steady-state theory of the expanding universe,” Monthly Notices of the Royal Astronomical Society 108, 252 (1948). F. Hoyle, “A new model for the expanding universe,” Monthly Notices of the Royal Astronomical Society 108, 372 (1948). See also Yu. Balashov, “Uniformitarianism in cosmology: Background and philosophical implications of the steady-state theory,” Stud. Hist. Philos. Sci. 25B, 933 (1994).

    Google Scholar 

  42. D. Albert and B. Loewer, “Interpreting the many-worlds interpretation,” Synthese 77, 195 (1988).

    Google Scholar 

  43. H. Kragh, Cosmology and Controversy (Princeton University Press, Princeton, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ćirković, M.M. Is the Universe Really That Simple?. Foundations of Physics 32, 1141–1157 (2002). https://doi.org/10.1023/A:1016538827462

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016538827462

Navigation