Skip to main content
Log in

Modeling of the Interphase of Polymer-Matrix Composites: Determination of Its Structure and Mechanical Properties

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

In this work, a model is developed which allows one to determine the thickness and properties of the interphase layer in unidirectional and filled composites, assuming that the materials of the interphase, matrix, and fillers may have a fractal structure, and to predict the properties of composites with interphases. Using a set of computer programs elaborated, the corresponding calculations are carried out for glass-epoxy composites, epoxy carboplastics, and graphite-filled epoxy polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. S. Lipatov, Physicochemical Principles of Filled Polymers [in Russian], Khimiya, Moscow (1991).

    Google Scholar 

  2. I. S. Deev and L. P. Kobetz, “Structure-forming in filled thermoreactive polymers,” Kolloid. Zh., 61,No. 5, 650–660 (1999).

    Google Scholar 

  3. V. U. Novikov and R. A. Tkalenko, “Modeling composites on graphs with parameters optimization,” Mech. Compos. Mater., 32, No. 4, 321–330 (1996).

    Google Scholar 

  4. L. T. Drzal, “The effect of polymeric matrix mechanical properties on the fiber-matrix interfacial shear strength,” Mater. Sci. Eng., A126,No. 2, 289–293 (1990).

    Article  Google Scholar 

  5. P. Theocaris and E. Sideridis, “The elastic moduli of particulate-filled polymers,” J. Appl. Sci., 29,No. 10, 2997–3011 (1984).

    Article  Google Scholar 

  6. W. Wu, I. Verpoest, and J. Varna, “A novel axisymmetric variational analysis of the stress transfer into fiber through a partially debonded interface,” Compos. Sci. Technol., 58,No. 12, 1863–1877 (1998).

    Article  Google Scholar 

  7. W. Wu, E. Jacobs, I. Verpoest, and J. Varna, “Variational approach to the stress transfer problem through partially debonded interfaces in a three-phase composite,” Compos. Sci. Technol., 59,No. 4, 519–535 (1999).

    Article  Google Scholar 

  8. W. Wu, I. Verpoest, and J. Varna, “An improved analysis of the stress in a single-fibre fragmentation test. Part II. 3-Phase Model,” Compos. Sci. Technol., 58, 41–50 (1998).

    Article  Google Scholar 

  9. J. G. Williams, M. E. Donnellan, M. R. James, and W. H. Morris, “Properties of the interphase in organic matrix composites,” Mater. Sci. Eng., 126, No. 2, 305–312 (1990).

    Article  Google Scholar 

  10. G. M. Gunyaev, The Structure and Properties of Polymer-Fiber Composites [in Russian], Khimiya, Moscow (1981).

    Google Scholar 

  11. V. D. Shabetnik, Fractal Physics. Science of the Universe [in Russian], Tibr, Moscow (2000).

    Google Scholar 

  12. M. Schroeder, Fractals, Chaos, Power Lows, W. H. Freeman and Co., New York (1997).

    Google Scholar 

  13. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman and Co., New York (1982).

    Google Scholar 

  14. V. U. Novikov, G. V. Kozlov, and O. Y. Buryan, “Fractal approach to the interphase in filled polymers,” Mech. Compos. Mater., 35, No. 1, 1–18 (2000).

    Google Scholar 

  15. V. U. Novikov, and G. V. Kozlov, “Structure and properties of polymers in terms of fractal approach,” Russ. Chem. Rev., 69,No. 6, 523–549 (2000).

    Article  Google Scholar 

  16. V. U. Novikov and G. V. Kozlov, Analysis of the Failure of Polymers within the Framework of Fractal Approoach [in Russian], MGU, Moscow (2001).

    Google Scholar 

  17. I. Ya. Ladyzhinskii, “Colloidal fractal aggragates or a gel”? Kolloid. Khim., 54, No. 4, 80–86 (1992).

    Google Scholar 

  18. D. Avnir, D. Farin, and P. Pfeifer, “Molecular fractal surfaces,” Nature, 308,No. 5, 261–263 (1984).

    Google Scholar 

  19. V. A. Bagryanskii, V. K. Malinovskii, V. N. Novikov, L. M. Puschaeva, and A. P. Sokolov, “Inelastic diffusion of light on fractal vibration modes in polymers,” Fiz. Tverd. Tela, 30,No. 8, 2360–2366 (1988).

    Google Scholar 

  20. R. Rammal and G. Toulouse, “Random walks on fractal structures and percolation clusters,” J. Physiq. Lettr. (Paris), 44, No. 1, 13–22 (1983).

    Google Scholar 

  21. Yu. S. Lipatov, Interphase Phenomena in Polymers [in Russian], Kiev, Naukova Dumka (1980).

    Google Scholar 

  22. V. U. Novikov and O. Y. Buryan, “Modeling of the interphase in anisotropic composites,” Prikl. Fiz., No. 1, 67–73 (2000).

    Google Scholar 

  23. V. U. Novikov, A. V. Vlasov, and O. Y. Buryan, “The development of an interphase investigation strategy for hybrid polymer composites,” Materialovedenie, No. 1, 20–24 (1999).

    Google Scholar 

  24. H. G. E. Hentschel and J. M. Deutch, “Flory-type approximation for the fractal dimension of cluster-cluster aggregates,” Phys. Rev. A, 29, No. 12, 1609–1611 (1984).

    Article  Google Scholar 

  25. P. Pfeifer, D. Avnir, and D. Farin, “Scaling behaviour of surface irregularity in the molecular domain: from adsorption studies to fractal catalysis,” J. Stat. Phys., 36, Nos. 5/6, 716 (1984).

    Google Scholar 

  26. D. Farin, S. Peleg, D. Yavin, and D. Avnir, “Applications and limitations of boundary-line fractal analysis of irregular surface: proteins, aggregates and porous materials,” Longmuir, No. 4, 399–407 (1985).

    Google Scholar 

  27. V. U. Novikov and G. V. Kozlov, “The physical base of the processes of energy dissipation under the impact tests of polymers,” Prikl. Fiz., No. 1, 77 (1997).

    Google Scholar 

  28. V. U. Novikov and G. V. Kozlov, “Fractal analysis of the elastic properties of disperse-filled composites,” in: Symp. “Sinergetika-96,” 12-14 November, 1996, Synergetics, Structure, and Properties of Materials. Pt. II [in Russian], Moscow (1996), p. 225.

  29. S. Wu, “Chain structure and entanglement,” J. Polym. Sci. Pt. B: Polym. Phys., 27, No. 4, 723–741 (1989).

    Article  Google Scholar 

  30. A. S. Balankin, Synergetics of Deforming Bodies. Pt. I [in Russian], MO SSSR, Moscow (1991).

    Google Scholar 

  31. A. I. Bobryshev, Synergetics of Composite Materials [in Russian], NPO “ORIUS,” Lipetsk (1994).

    Google Scholar 

  32. D. Avnir, D. Farin, and P. Pfeifer, “Surface geometric irregularity of particulate materials: the fractal approach,” J. Colloid. Interf. Sci., 103, No. 1, 112–123 (1985).

    Article  Google Scholar 

  33. A. S. Balankin, “The theory of elasticity and entropial high-plasticity of fractals,” Zh. Eksperim. Tekh. Fiz., 17, No. 17, 68–72 (1991).

    Google Scholar 

  34. L. D. Landau and E. M. Lifshitz, The Theory of Elasticity [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  35. E. H. Kerner, “The elastic and thermoelastic properties of composite media,” Proc. Phys. Soc., Sec. B, 69,808–813 (August, 1956).

    Google Scholar 

  36. V. A. Kochetkov, “Calculations of elastic characteristics and creep functions of hollow-sphere plastics by the effective medium method,” Mech. Compos. Mater., 30, No. 2, 121–130 (1994).

    Google Scholar 

  37. Z. Zlatev, “On some pivotal strategies in Gaussian elimination by sparse technique,” SIAM J. Numer. Anal., No. 17, 18–30 (1980).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buryan, O.K., Novikov, V.U. Modeling of the Interphase of Polymer-Matrix Composites: Determination of Its Structure and Mechanical Properties. Mechanics of Composite Materials 38, 187–190 (2002). https://doi.org/10.1023/A:1016008432083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016008432083

Navigation