Skip to main content
Log in

The Biology and Osmoadaptation of Haloalkaliphilic Methanotrophs

  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

There is increasing evidence for the presence and activity of methanotrophic bacteria in saline and alkaline aquatic environments located in different ecogeographical regions. Alkalitolerant halophilic and alkaliphilic halotolerant methanotrophs of type I were found to be able to utilize methane and methanol, to oxidize ammonium ions, and to transform various organic compounds in a wide range of water salinities (up to 12% NaCl) and pH values (from 5 to 11). The ecophysiological importance of methanotrophs in microbial communities inhabiting saline and alkaline aquatic environments is due to their involvement in the global cycles of methane and major bioelements (C, N, and S). Specific cyto- and biochemical properties of haloalkaliphilic methanotrophs—the synthesis of osmoprotectants (ectoine, 5-oxoproline, and sucrose), the accumulation of potassium ions, the formation of glycoprotein S-layers on the outer surface of their cell walls, and the modification of the chemical composition of their membranes—allow them to adapt to highly saline and alkaline habitats. Due to their specific properties, haloalkaliphilic methanotrophs may be of use in modern biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Gal’chenko, V.F., Andreev, L.V., and Trotsenko, Yu.A., Taksonomiya i identifikatsiya obligatnykh metanotrofnykh bakterii(Taxonomy and Identification of Obligately Methanotrophic Bacteria), Pushchino: Nauchn. Tsentr Biol. Issled. Akad. Nauk SSSR, 1986.

  2. Malashenko, Yu.P., Romanovskaya, V.A., and Trotsenko, Yu.A., Metanokislyayushchie mikroorganizmy(Methane-oxidizing Microorganisms), Moscow: Nauka, 1978.

    Google Scholar 

  3. Hanson, R.S. and Hanson, T.E., Methanotrophic Bacteria, Microbiol. Rev., 1996, vol. 60, no. 2, pp. 439-471.

    Google Scholar 

  4. Sieburth, J.M., Jonson, P.W., Eberhardt, M.A., Sieracki, M.E., Lidstrom, M.E., and Laux, D., The First Methane-oxidizing Bacterium from the Upper Mixing Layer of the Deep Ocean: Methylomonas pelagicasp. nov, Curr. Microbiol., 1987, vol. 14, pp. 285-293.

    Google Scholar 

  5. Hutton, W.E. and Zobell, C.E., The Occurrence and Characteristics of Methane-oxidizing Bacteria in Marine Sediments, J. Bacteriol.,1949, vol. 58, no. 4, pp. 463-474.

    Google Scholar 

  6. Lidstrom, M.E., Isolation and Characterization of Marine Methanotrophs, Antonie van Leeuwenhoek, 1988, vol. 54, no. 3, pp. 189-199.

    Google Scholar 

  7. Gal’chenko, V.F., The Bacterial Methane Cycle in Marine Ecosystems, Priroda, 1995, no. 6, pp. 35-48.

  8. Galchenko, V.F., Ecology of Methanotrophic Bacteria in Aquatic Ecosystems, Turpaev, T.M., Ed., New York: Harwood, 1995.

    Google Scholar 

  9. Malashenko, Yu.R., Khaier, Yu., Berger, U., Romanovskaya, V.A., and Muchnik, F.V., Biologiya metanobrazuyushchikh i metanokislyayushchikh mikroorganizmov(The Biology of Methanogenic and Methane-oxidizing Microorganisms), Kiev: Naukova Dumka, 1993.

    Google Scholar 

  10. Malashenko, Yu.R., Khaier, Yu., Romanovskaya, V.A., Berger, U., Budkova, E.N., and Shatokhina, E.S., Formation and Oxidation of Methane in Hypersaline Lakes, Mikrobiol. Zh., 1995, vol. 57, no. 3, pp. 24-29.

    Google Scholar 

  11. Grant, W.D. and Jones, B.E., Alkaline Environments, Encyclopedia of Microbiology,Lederberg, J., Ed., New York: Academic, vol. 1, pp. 126-133.

  12. Issatchenko, B.L., Biogenic Processes in the Chlorine, Sulfate, and Alkaline Lakes of the Kulunda Steppe, Izbrannye trudy(Selected Works), Moscow: Akad. Nauk SSSR, 1951, pp. 143-162.

    Google Scholar 

  13. Zhilina, T.N. and Zavarzin, G.A., Alkaliphilic Anaerobic Community at pH 10, Curr. Microbiol., 1994, vol. 29, no. 2, pp. 109-112.

    Google Scholar 

  14. Zavarzin, G.A., Zhilina, T.N., and Pikuta, E.V., Secondary Anaerobes in the Haloalkaliphilic Communities of Tuva Lakes, Mikrobiologiya, 1996, vol. 65, no. 4, pp. 546-553.

    Google Scholar 

  15. Sorokin, D.Yu., Lysenko, A.M., and Mityushina, L.L., Isolation and Characterization of Alkaliphilic Chemoorganotrophic Bacteria Capable of Oxidizing Reduced Inorganic Sulfur Compounds to Tetrathionate, Mikrobiologiya, 1996, vol. 65, pp. 370-383.

    Google Scholar 

  16. Ventoza, A., Nieto, J.J., and Oren, A., Biology of Moderately Halophilic Aerobic Bacteria, Microbiol. Mol. Biol. Rev., 1998, vol. 62, no. 2, pp. 504-544.

    Google Scholar 

  17. Yumoto, I., Yamasaki, K., Sawabe, T., Nakano, K., Kawasaki, K., Ezura, Y., and Shinano, H., Bacillus hortisp. nov., a New Gram-Negative Alkaliphilic Bacillus, Int. J. Syst. Bacteriol., 1998, vol. 48, pp. 565-571.

    Google Scholar 

  18. Joye, S.B., Connell, T.L., Miller, L.G., Oremland, R.S., and Jellison, R.S., Oxidation of Ammonia and Methane in an Alkaline, Saline Lake, Limnol. Oceanogr., 1999, vol. 44, no. 1, pp. 178-188.

    Google Scholar 

  19. Zavarzin, G.A., Epicontinental Soda Lakes as Possible Relic Biotopes Where Terrestrial Biota Had Evolved, Mikrobiologiya, 1993, vol. 62, no. 5, pp. 789-800.

    Google Scholar 

  20. Zavarzin, G.A., Zhilina, T., and Kevbrin, V.V., Alkaliphilic Microbial Communities and Their Functional Diversity, Mikrobiologiya, 1999, vol. 68, no. 5, pp. 579-599.

    Google Scholar 

  21. Tindall, B.J., Prokaryotic Life in the Alkaline Saline Athalassic Environment, Halophilic Bacteria, Rodrigez-Valera, F., Ed., Boca Raton: CRC, 1988, pp. 31-67.

    Google Scholar 

  22. Jones, B.E., Grant, W.D., Collins, N.C., and Mwatha, W.E., Alkaliphiles: Diversity and Identification, Bacterial Diversity and Systematics, Priest, F.G. et al., Eds., New York: Plenum, 1994, pp. 195-228.

    Google Scholar 

  23. Jones, B.E., Grant, W.D., Duckworth, A.W., and Owenson, G.G., Microbial Diversity of Soda Lakes, Extremophiles, 1998, vol. 2, pp. 191-200.

    Google Scholar 

  24. Gorlenko, V.M., Namsaraev, B.B., Kulyrova, A.V., Zavarzin, D.G., and Zhilina, T.N., Activity of Sulfatereducing Bacteria in the Bottom Sediments of Soda Lakes in the Southeastern Transbaikal Region, Mikrobiologiya, 1999, vol. 68, no. 5, pp. 664-670.

    Google Scholar 

  25. Slobodkin, F.I. and Zavarzin, G.A., Formation of Methane in the Halophilic Cyanobacterial Mats of Syvash, Mikrobiologiya, 1992, vol. 61, no. 2, pp. 294-299.

    Google Scholar 

  26. Conrad, R., Frenzel, P., and Cohen, Y., Methane Emission from Hypersaline Microbial Mats: Lack of Aerobic Methane Oxidation Activity, FEMS Microbiology, 1995, vol. 16, pp. 297-306.

    Google Scholar 

  27. Sokolov, A.P. and Trotsenko, Y.A., Methane Consumption in (Hyper)saline Habitats of the Crimea (Ukraine), FEMS Microbiol. Ecol., 1995, vol. 18, pp. 299-304.

    Google Scholar 

  28. Khmelenina, V.N., Starostina, N.G., Tsvetkova, M.G., Sokolov, A.P., Suzina, N.E., and Trotsenko, Yu.A., Methanotrophic Bacteria in the Saline Lakes of Ukraine and Tuva, Mikrobiologiya, 1996, vol. 65, no. 5, pp. 696-703.

    Google Scholar 

  29. Khmelenina, V.N., Eshinimaev, B.Ts., Kalyuzhnaya, M.G., and Trotsenko, Yu.A., The Potential Activity of Methane and Ammonium Oxidation by the Methanotrophic Communities of Soda Lakes in the Southern Transbaikal Region, Mikrobiologiya, vol. 69, no. 4, pp. 553-558.

  30. Namsaraev, B.B., Zhilina, T.N., Kulyrova, A.V., and Gorlenko, V.M., Bacterial Production of Methane in the Soda Lakes of the Southeastern Transbaikal Region, Mikrobiologiya, 1999, vol. 68, no. 5, pp. 671-676.

    Google Scholar 

  31. Murrell, J.C., McDonald, I.R., and Bourne, D.G., Molecular Methods for the Study of Methanotroph Ecology, FEMS Microbiol. Ecol., 1998, vol. 27, pp. 103-114.

    Google Scholar 

  32. Holmes, A.J., Owens, N.J., and Murrell, J.C., Detection of Novel Marine Methanotrophs Using Phylogenetic and Functional Gene Probes after Methane Enrichment, Microbiology, 1995, vol. 141, no. 8, pp. 1947-1955.

    Google Scholar 

  33. Khmelenina, V.N., Kalyuzhnaya, M.G., Starostina, N.G., Suzina, N.E., and Trotsenko, Y.A., Isolation and Characterization of Halotolerant Alkaliphilic Methanotrophic Bacteria from Tuva Soda Lakes, Curr. Microbiol., 1997, vol. 35, no. 5, pp. 257-261.

    Google Scholar 

  34. Kalyuzhnaya, M.G., Khmelenina, V.N., Starostina, N.G., Baranova, S.V., Suzina, N.E., and Trotsenko, Yu.A., A New Moderately Halophilic Methanotroph of the Genus Methylobacter, Mikrobiologiya, 1998, vol. 67, no. 4, pp. 532-539.

    Google Scholar 

  35. Kalyuzhnaya, M.G., Khmelenina, V.N., Suzina, N.E., Lysenko, A.M., and Trotsenko, Yu.A., New Methanotrophic Bacteria Isolated from the Soda Lakes of Southern Transbaikal, Mikrobiologiya, 1999, vol. 68, no. 5, pp. 689-697.

    Google Scholar 

  36. Kalyuzhnaya, M.G., Khmelenina, V.N., Eshinimaev, B.Ts., Suzina, N.E., Nikitin, D., Solonin, A., Lin, J.L., McDonald, I.R., Murrell, J.C., and Trotsenko, Y.A., Taxonomic Characterization of New Alkaliphilic and Alkalitolerant Methanotrophs from Soda Lakes of the Southeastern Transbaikal Region and Description of Methylomicrobium buryatensesp. nov., Syst. Appl. Microbiol., 2001, vol. 24, pp. 166-176.

    Google Scholar 

  37. Khmelenina, V.N., Kalyuzhnaya, M.G., and Trotsenko, Yu.A., Physiological and Biochemical Characteristics of the Haloalkalitolerant Methanotroph Methylobacter alcaliphilus, Mikrobiologiya, 1997, vol. 66, no. 4, pp. 447-453.

    Google Scholar 

  38. Sorokin, D.Y., Jones, B.E., and Kuenen, J.G., A Novel Obligately Methylotrophic, Methane-oxidizing MethylomicrobiumSpecies from a Highly Alkaline Environment, Extremophiles, 2000, vol. 4, no. 1, pp. 145-155.

    Google Scholar 

  39. Khmelenina, V.N., Kalyuzhnaya, M.G., Sakharovsky, V.G., Trotsenko, Y.A., and Gottschalk, G., Osmoadaptation in Halophilic and Alkaliphilic Methanotrophs, Arch. Microbiol., 1999, vol. 172, no. 5, pp. 321-329.

    Google Scholar 

  40. Severina, L.O., Bacterial S-layers, Mikrobiologiya, 1995, vol. 64, no. 6, pp. 725-733.

    Google Scholar 

  41. Sleytr, U.B. and Beveridge, J., Bacterial S-layers, Trends Microbiol., 1999, vol. 7, no. 6, pp. 253-260.

    Google Scholar 

  42. Tyurin, V.S., Gorskaya, L.A., Kaftanova, A.S., Loginova, T.M., and Mikhailov, A.M., Some Particular Characteristics of the Minute Structure of Methylococcus capsulatusCells under Different Cultivation Conditions, Mikrobiologiya, 1985, vol. 54, no. 6, pp. 770-775.

    Google Scholar 

  43. Russell, N.J., Adaptive Modifications in Membranes of Halotolerant and Halophilic Microorganisms, J. Bioenerg. Biomembr., 1989, vol. 54, no. 1, pp. 93-113.

    Google Scholar 

  44. Thiemann, B. and Imhoff, I.F., The Effect of Salt on the Lipid Composition of Ectothiorhodospira, Arch. Microbiol., 1991, vol. 156, no. 5, pp. 376-384.

    Google Scholar 

  45. Galinski, E.A. and Trüper, H.G., Microbial Behavior in Salt-stressed Ecosystems, FEMS Microbiol. Rev., 1994, vol. 15, pp. 95-108.

    Google Scholar 

  46. Galinski, E.A., Osmoadaptation in Bacteria, Adv. Microb. Physiol., 1995, vol. 37, pp. 273-328.

    Google Scholar 

  47. Costa, M.S., Santos, H., and Galinski, E.A., Solutes in Bacteria and Archaea, Adv. Biochem. Eng. Biotechnol., 1998, vol. 61, pp. 118-153.

    Google Scholar 

  48. Khmelenina, V.N., Sakharovskii, V.G., Reshetnikov, A.S., and Trotsenko, Yu.A., Synthesis of Organic Osmoprotectants in Halophilic and Alkaliphilic Methanotrophs, Mikrobiologiya, vol. 69, no. 4, pp. 465-470.

  49. Shishkina, V.N. and Trotsenko, Y.A., Multiple Metabolic Lesions in Obligate Methanotrophic Bacteria, FEMS Microbiol. Lett., 1982, vol. 13, pp. 237-242.

    Google Scholar 

  50. Peters, P., Galinski, E.A., and Trüper, H.G., The Biosynthesis of Ectoine, FEMS Microbiol. Lett., 1990, vol. 71, no. 1-2, pp. 157-162.

    Google Scholar 

  51. Vorholt, J.A., Chistoserdova, L., Stolyar, S.M., Thauer, R.K., and Lidstrom, M.E., Distribution of Tetrahydromethanopterin-Dependent Enzymes in Methylotrophic Bacteria and Phylogeny of Methenyl Tetrahydromethanopterin Cyclohydrolases, J. Bacteriol., 1999, vol. 181, no. 18, pp. 5750-5757.

    Google Scholar 

  52. Schauder, R., Preuß, A., Jetten, M., and Fuchs, G., Oxidative and Reductive Acetyl CoA/Carbon Monoxide Dehydrogenase Pathway in Desulfobacterium autotrophicum: II. Demonstration of the Enzymes of the Pathway and Comparison of CO Dehydrogenases, Arch. Microbiol., 1989, vol. 151, no. 1, pp. 84-89.

    Google Scholar 

  53. Oren, A., Bioenergetic Aspects of Halophilism, Microbiol. Mol. Biol. Rev., 1999, vol. 63, no. 2, pp. 334-348.

    Google Scholar 

  54. Doronina, N.V., Darmaeva, Ts.D., and Trotsenko, Yu.A., New Aerobic Methylotrophic Isolates from the Soda Lakes of Southern Transbaikal, Mikrobiologiya,2001, vol. 70, no. 3, pp. 398-404.

    Google Scholar 

  55. Kevbrin, V.V., Zhilina, T.N., Rainey, F.A., and Zavarzin, G.A., Tindallia magadiigen. nov., sp. nov., an Alkaliphilic Anaerobic Ammonifier from Soda Lake Deposits, Curr. Microbiol., 1998, vol. 37, pp. 94-100.

    Google Scholar 

  56. Zhilina, T.N., Detkova, E.N., Rainey, F.A., Osipov, G.A., Lysenko, A.M., Kostrikina, N.A., and Zavarzin, G.A., Natronoincola histidinovoransgen. nov., sp. nov., a New Alkaliphilic Acetogenic Anaerobe, Curr. Microbiol., 1998, vol. 37, pp. 177-185.

    Google Scholar 

  57. Ward, B.B., Martino, P.P., Diarz, M.C., and Joe, S.B., Analysis of Ammonia-oxidizing Bacteria from Hypersaline Mono Lake, California, on the Basis of 16S RNA Sequences, Appl. Environ. Microbiol., 2000, vol. 66, no. 7, pp. 2873-2884.

    Google Scholar 

  58. Joye, S.B., Connell, T.L., Miller, L.G., Oremland, R.S., and Jellison, R.S., Oxidation of Ammonia and Methane in an Alkaline, Saline Lake, Limnol. Oceanogr., 1999, vol. 44, no. 1, pp. 178-188.

    Google Scholar 

  59. Fuse, H., Ohta, M., Takimura, O., Murakami, K., Inoue, H., Yamaoka, Y., Oclarit, J.M., and Omori, T., Oxidation of Trichloroethylene and Dimethyl Sulfide by a Marine MethylomicrobiumStrain Containing Soluble Methane Monooxygenase, Biosci. Biotechnol. Biochem., 1998, vol. 62, pp. 1925-1931.

    Google Scholar 

  60. Lippert, K. and Galinski, E.A., Enzyme Stabilization by Ectoine-Type Compatible Solutes: Protection against Heating, Freezing, and Drying, Appl. Microbiol. Biotechnol., 1992, vol. 37, pp. 61-65.

    Google Scholar 

  61. Louis, P., Trüper, H.G., and Galinski, E.A., Survival of Escherichia coliduring Drying and Storage in the Presence of Compatible Solutes, Appl. Microbiol. Biotechnol., 1994, vol. 41, pp. 684-688.

    Google Scholar 

  62. Sleytr, U.B., Basic and Applied S-Layer Research: An Overview, FEMS Microbiol. Rev., 1997, vol. 20, no. 1/2, pp. 5-12.

    Google Scholar 

  63. Kevbrin, V.V., Zhilina, T.N., and Zavarzin, G.A., The Degradation of Cellulose by an Anaerobic Alkaliphilic Microbial Community, Mikrobiologiya, 1999, vol. 68, no. 5, pp. 686-695.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trotsenko, Y.A., Khmelenina, V.N. The Biology and Osmoadaptation of Haloalkaliphilic Methanotrophs. Microbiology 71, 123–132 (2002). https://doi.org/10.1023/A:1015183832622

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015183832622

Navigation