Skip to main content
Log in

Statistical methods for QTL mapping in cereals

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

This paper gives an overview of the statistical theory suitable for mapping quantitative trait loci in experimental populations derived from inbred parents, with a particular emphasis on methodology for cereal crops. The basic theory is described, and some new areas of statistical research appropriate for mapping in cereal crops are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Basten, C.J., Weir, B.S. and Zeng, Z.B. 1994. Zmap: a QTL cartographer. In: C. Smith, J.S. Gavora, B. Benkel, J. Chesnais, W. Fairfull, J.P. Gibson, B.W. Kennedy and E.B. Burnside (Eds.) Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software, Vol. 22, pp. 65-66.

  • Basten, C.J., Weir, B.S. and Zeng, Z.B. 1999. QTL Cartographer, Version 1.13: A Reference Manual and Tutorial for QTL Mapping. Department of Statistics, North Carolina State University, Raleigh, NC.

    Google Scholar 

  • Beavis, W.D. 1994. The power and deceit of QTL experiments: lessons from comparative QTL studies. In: D.B. Wilkinson (Ed.) 49th Annual Corn and Sorghum Industry Research Conference, American Seed Trade Association, Washington, DC, pp. 250-266.

    Google Scholar 

  • Chase, K., Adler, F.R. and Lark, K.G. 1997. EPISTAT: a computer program for identifying and testing interactions between pairs of quantitative trait loci. Theor. Appl. Genet. 94: 724-730.

    Google Scholar 

  • Churchill, G.A. and Doerge, R.W. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.

    Google Scholar 

  • Crossa, J., Vargas, M., van Eeuwijk, F.A., Jiang, C., Edmeades, G.O. and Hoisington, D. 1999. Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables. Theor. Appl. Genet. 99: 611-625.

    Google Scholar 

  • Darvasi, A., Weintreb, A., Minke, V., Weller, J. and Soller, M. 1993. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics 134: 943-951.

    Google Scholar 

  • Davies, R.B. 1987. Hypothesis testing when a nuisance parameter is present only under the alternative. Biometrika 74: 33-43.

    Google Scholar 

  • Doerge, R.W. and Churchill, G.A. 1996. Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285-294.

    Google Scholar 

  • Doerge, R.W. and Rebai, A. 1996. Significance thresholds for QTL interval mapping tests. Heredity 76: 459-464.

    Google Scholar 

  • Doerge, R.W., Zeng, Z.-B. and Weir, B.S. 1997. Statistical issues in the search for genes affecting quantitative traits in experimental populations. Stat. Sci. 12: 195-219.

    Google Scholar 

  • East, E.M. 1910. A Mendelian interpretation of variation that is apparently continuous. Am. Nat. 44: 65-82.

    Google Scholar 

  • East, E.M. and Hayes, H.K. 1911. Inheritance in maize. Connecticut Agricultural Experimental Station Bulletin 167; 142 pp.

  • Edwards, M.D., Stuber, C.W. and Wendel, J.F. 1987. Molecular-marker-facilitated investigation of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116: 113-125.

    Google Scholar 

  • Emerson, R.A. and East, E.M. 1913. The inheritance of quantitative characters in maize. Bulletin of the Agricultural Experimental Station, Nebraska 2; 118 pp.

  • Fisher, R.A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Transact. R. Soc. Edinb. 52: 399-433.

    Google Scholar 

  • Genstat 5 Committee 1997. Genstat 5 Release 4.1 Manual Supplement. Numerical Algorithms Group, Oxford.

    Google Scholar 

  • George, E.I. 2000. The variable selection problem. J. Am. Stat. Ass. 95: 1304-1308.

    Google Scholar 

  • Goffinet, B. and Gerber, S. 2000. Quantitative trait loci: a meta-analysis. Genetics 155: 463-473.

    Google Scholar 

  • Hackett, C.A. 1994. Selection of markers linked to quantitative trait loci by regression techniques. In: J.W. van Ooijen and J. Jansen (Eds.) Biometrics in Plant Breeding: Applications of Molecular Markers, pp. 99-106. Proceedings of the Ninth Meeting of the Eucarpia Section Biometrics in Plant Breeding, CPRO-DLO, Wageningen, Netherlands.

    Google Scholar 

  • Hackett, C.A., Meyer, R.C. and Thomas, W.T.B. 2001. Multi-trait QTL mapping in barley using multivariate regression. Genet. Res. 77: 95-106.

    Google Scholar 

  • Haley, C.S. and Knott, S.A. 1992. A sinple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315-324.

    Google Scholar 

  • Hayes, P.M., Liu, B.H., Knapp, S.J., Chen, F., Jones, B., Blake, T., Franckowiak, J., Rasmusson, D., Sorrells, M., Ullrich, S.E., Wesenberg, D. and Kleinhofs, A. 1993. Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm. Theor. Appl. Genet. 87: 392-401.

    Google Scholar 

  • Jannink, J.L. and Jansen, R. 2001. Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157: 445-454.

    Google Scholar 

  • Jansen, R.C. 1992. A general mixture model for mapping quantitative trait loci by using molecular markers. Theor. Appl. Genet. 85: 252-260.

    Google Scholar 

  • Jansen, R.C. 1993. Interval mapping of multiple quantitative trait loci. Genetics 135: 205-211.

    Google Scholar 

  • Jansen, R.C. 1994. Controlling the type I and type II errors in mapping quantitative trait loci. Genetics 138: 871-881.

    Google Scholar 

  • Jansen, R.C. and Stam, P. 1994. High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136: 1447-1455.

    Google Scholar 

  • Jiang, C. and Zeng, Z.-B. 1995. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140: 1111-1127.

    Google Scholar 

  • Johannsen, W. 1909. Elemente der exakten Erblichkeitslehre. Gustav Fischer, Jena, Germany.

    Google Scholar 

  • Jourjon, M.F., Frayssines, S. and Vinceller, K. 2000. MCQTL software: demonstration. In: A. Gallais, C. Dillman and I. Goldringer (Eds.) Quantitative Genetics and Breeding Methods: The Way Ahead, pp. 301-305. Proceedings of the Eleventh Meeting of the Eucarpia Section Biometrics in Plant Breeding, INRA, Paris.

    Google Scholar 

  • Kao, C.-H. 2000. On the differences between maximum likelihood and regression interval mapping in the analysis of quantitative trait loci. Genetics 156: 855-865.

    Google Scholar 

  • Kearsey, M.J. and Farquhar, A.G.L. 1998. QTL analysis in plants: where are we now? Heredity 80: 137-142.

    Google Scholar 

  • Korol, A.B., Ronin, Y.I. and Kirzhner, V.M. 1995. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140: 1137-1147.

    Google Scholar 

  • Lander, E.S. and Botstein, D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199.

    Google Scholar 

  • Lander, E.S. and Botstein, D. 1994. Corrigendum. Genetics 136: 705.

    Google Scholar 

  • Lebreton, C.M. and Visscher, P.M. 1998. Empirical nonparametric bootstrap strategies in quantitative trait loci mapping: conditioning on the genetic model. Genetics 148: 525-535.

    Google Scholar 

  • Lin, H.X., Yamamoto, T., Sasaki, T. and Yano, M. 2000. Characterization and detection of epistatic interactions of 3 QTLs, Hd1, Hd2, and Hd3, controlling heading date in rice using nearly isogenic lines. Theor. Appl. Genet. 101: 1021-1028.

    Google Scholar 

  • Liu, B.H. 1998. Statistical Genomics: Linkage, Mapping and QTL Analysis. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Liu, Y.F. and Zeng, Z.-B. 2000. A general mixture model approach for mapping quantitative trait loci from diverse cross designs involving multiple inbred lines. Genet. Res. 75: 345-355.

    Google Scholar 

  • Lynch, M. and Walsh, B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates.

  • Mangin, B., Goffinet, B. and Rebai, A. 1994. Constructing confidence intervals for QTL location. Genetics 138: 1301-1308.

    Google Scholar 

  • Mangin, B., Thoquet, P. and Grimsley, N. 1998. Pleiotropic QTL analysis. Biometrics 54: 88-99.

    Google Scholar 

  • Martinez, O. and Curnow, R.N. 1992 Estimating the locations and the sizes of the effects of quantitative trait loci using flanking markers. Theor. Appl. Genet. 85: 480-488.

    Google Scholar 

  • McCullagh, P. and Nelder, J.A. 1989. Generalized Linear Models, 2nd ed. Chapman & Hall, London.

    Google Scholar 

  • Melchinger, A.E., Utz, H.F. and Schön, C.C. 1998. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149: 383-403.

    Google Scholar 

  • Nettleton, D. and Doerge, R.W. 2000. Accounting for variability in the use of permutation testing to detect quantitative trait loci. Biometrics 56: 52-58.

    Google Scholar 

  • Nilsson-Ehle, H. 1909 Kreuzunguntersuchungen an Hafer und Weizen. Lunds Univ. Åarskr. 5 (2) 1-122.

    Google Scholar 

  • Piepho, H.P. 2001. A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics 157: 425-432.

    Google Scholar 

  • Piepho, H.P. and Gauch, H.G. Jr. 2001. Marker pair selection for mapping quantitative trait loci. Genetics 157: 433-444.

    Google Scholar 

  • Pressoir, G., Albar, L., Ahmadi, N., Rimbault, I., Lorieux, M., Fargette, D. and Ghesquiere, A. 1998. Genetic basis and mapping of the resistance to rice yellow mottle virus. II. Evidence of a complementary epistasis between two QTLs. Theor. Appl. Genet. 97: 1155-1161.

    Google Scholar 

  • Rebai, A. and Goffinet, B. 1993. Power of tests for QTL detection using replicated progenies derived from a diallel cross. Theor. Appl. Genet. 86: 1014-1022.

    Google Scholar 

  • Rebai, A. and Goffinet, B. 2000. More about quantitative trait locus mapping with diallel designs. Genet. Res. 75: 243-247.

    Google Scholar 

  • Rebai, A., Goffinet, B. and Mangin, B. 1994. Approximate thresholds of interval mapping tests for QTL detection. Genetics 138: 235-240.

    Google Scholar 

  • Rebai, A., Blanchard, P., Perret, D and Vincourt, P. 1997. Mapping quantitative trait loci controlling silking date in a diallel cross among four lines of maize. Theor. Appl. Genet. 95: 451-459.

    Google Scholar 

  • Romagosa, I., Ullrich, S.E., Han, F. and Hayes, P.M. 1996. Use of the additive main effects and multiplicative interaction model in QTL mapping for adaptation in barley. Theor. Appl. Genet. 93: 30-37.

    Google Scholar 

  • Ronin, Y.I., Kirzhner, V.M. and Korol, A.B. 1995. Linkage between loci of quantitative traits and marker loci: multi-trait analysis with a single marker. Theor. Appl. Genet. 90: 776-786.

    Google Scholar 

  • Sax, K. 1923. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8: 552-560.

    Google Scholar 

  • Schwarz, G. 1978. Estimating the dimension of a model. Ann. Stat. 6: 461-464.

    Google Scholar 

  • Thomas, W.T.B., Powell, W., Waugh, R., Chalmers, K.J., Barua, U.M., Jack, P., Lea, V., Forster, B.P., Swanston, J.S., Ellis, R.P., Hanson, P.R. and Lance, R.C.M. 1995. Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.) Theor. Appl. Genet. 91: 1037-1047.

    Google Scholar 

  • Thomas, W.T.B., Powell, W., Swanston, J.S., Ellis, R.P., Chalmers, K.J., Barua, U.M., Jack, P., Lea, V., Forster, B.P., Waugh, R. and Smith, D.B. 1996. Quantitative trait loci for germination and malting quality characters in a spring barley cross. Crop Sci. 36: 265-273.

    Google Scholar 

  • Trow, A.H. 1913. Forms of reduplication: primary and secondary. J. Genet. 2: 313-324.

    Google Scholar 

  • Utz, H.F. and Melchinger, A.E. 1994. Comparison of different approaches to interval mapping of quantitative trait loci. In: J.W. van Ooijen and J. Jansen (Eds.) Biometrics in Plant Breeding: Applications of Molecular Markers. Proceedings of the Ninth Meeting of the Eucarpia Section Biometrics in Plant Breeding, CPRO-DLO, Wageningen, Netherlands, pp.195-204.

    Google Scholar 

  • Utz, H.F. and Melchinger, A.E. 1996. PLABQTL: a program for composite interval mapping of QTL. J. Quant. Trait Loci 2(1).

  • Utz, H.F., Melchinger, A.E. and Schön, C.C. 2000. Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154: 1839-1849.

    Google Scholar 

  • van Ooijen, J.W. 1992. Accuracy of mapping quantitative trait loci in autogamous species. Theor. Appl. Genet. 84: 803-811.

    Google Scholar 

  • van Ooijen, J.W. and Maliepaard, C. 1996. MapQTL version 3.0: software for the calculation of QTL positions on genetic maps. CPRO-DLO, Wageningen, Netherlands.

    Google Scholar 

  • van Ooijen, J.W. 1999. LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 5: 613-624.

    Google Scholar 

  • Visscher, P.M., Thompson, R. and Haley, C.S. 1996. Confidence intervals in QTL mapping by bootstrapping. Genetics 143: 1013-1020.

    Google Scholar 

  • Wang, D.L., Zhu, J., Li, Z.K. and Paterson, A.H. 1999. Mapping QTLs with epistatic effects and QTL x environment interactions by mixed linear model approaches. Theor. Appl. Genet. 99: 1255-1264.

    Google Scholar 

  • Weller, J.I. 1986. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics 42: 627-640.

    Google Scholar 

  • Weller, J.I. 1987. Mapping and analysis of quantitative trait loci in Lycopersicon (tomato) with the aid of genetic markers using approximate maximum likelihood methods. Heredity 59: 413-421.

    Google Scholar 

  • Weller, J.I., Wiggans, G.R., van Raden, P.M. and Ron, M. 1996. Application of a canonical transformation to detection of quantitative trait loci with the aid of genetic markers in a multi-trait experiment. Theor. Appl. Genet. 92: 998-1002.

    Google Scholar 

  • Whittaker, J.C., Thompson, R. and Visscher, P.M. 1996. On the mapping of QTL by regression of phenotype on marker type. Heredity 77: 23-32.

    Google Scholar 

  • Wright, S. 1968. Evolution and the Genetics of Populations. I. Genetic and Biometric Foundations. University of Chicago Press, Chicago.

    Google Scholar 

  • Wu, P., Liao, C.Y., Hu, B., Yi, K.K., Jin, W.Z., Ni, J.J. and He, C. 2000. QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor. Appl. Genet. 100: 1295-1303.

    Google Scholar 

  • Xu, S. 1995. A comment on the simple regression method for interval mapping. Genetics 141: 1657-1659.

    Google Scholar 

  • Zeng, Z.-B. 1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc. Natl. Acad. Sci. USA 90: 10972-10976.

    Google Scholar 

  • Zeng, Z.-B. 1994. Precision mapping of quantitative trait loci. Genetics 136: 1457-1468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackett, C.A. Statistical methods for QTL mapping in cereals. Plant Mol Biol 48, 585–599 (2002). https://doi.org/10.1023/A:1014896712447

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014896712447

Navigation