Skip to main content
Log in

Extraction and modelling of oscillatory potentials

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

This paper considers the recommendation that Oscillatory Potentials (OP) be extracted by filtering in the frequency domain. This recommendation presumes that filtering isolates OPs from other ERG waveforms. However, we show that the leading edge of the a-wave has substantial frequency overlap with the OP spectrum at high intensities and that it contaminates these wavelets in the frequency domain. We propose a method of signal conditioning that removes a-waves prior to filtering. When this is done, the OPs show a bimodal distribution in the frequency domain that is well approximated by two Gaussians having means (±std. dev.) of 91.0±14.6 Hz and 153.1±17.1 Hz. This implies that two functions can be used to model the OPs in the time domain. However, we show that as most of the power of the Fourier spectrum (74%) is contained in a single Gaussian, a reasonable OP model can be derived by using a single function in the time domain. We test such a model on humans (n=5) and pigmented (n=14) and albino (n=14) guinea-pigs and show that it provides excellent fits to data across a range of flash exposures. Furthermore, changes in OP amplitude and timing between strains of guinea-pigs are easily detected with this model. We show that there is no statistical justification for making the model more complex by including multiple functions. Such paramatisation of the OP envelope provides a valuable and intuitive description of the OP waveforms in the time domain. The model provides an excellent description of OPs obtained with the current paradigm, however the single gaussian model may be deficient under stimulus conditions which produce highly asymmetric OP envelopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wachtmeister L. Oscillatory potential in the retina: what do they reveal? Prog Ret Eye Res 1998; 17: 485–521.

    Google Scholar 

  2. Guite P, Lachapelle P. The effect of 2-amino-4-phosphonobutyric acid on the oscillatory potentials of the electroretinogram. Doc Ophthalmol 1990; 75: 125–33.

    Google Scholar 

  3. Ogden TE. The oscillatory waves of the primate electroretinogram. Vision Res 1973; 13: 1059–74.

    Google Scholar 

  4. Wachtmeister L. Further studies of the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG) II. Glutamate-aspartate-and dopamine antagonists. Acta Ophthalmologica 1981; 59: 247–58.

    Google Scholar 

  5. Wachtmeister L, Dowling JE. The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 1978; 17: 1176–88.

    Google Scholar 

  6. Brown KT. The electroretinogram: Its components and their origins. Vision Res 1968; 8: 633–77.

    Google Scholar 

  7. Yonemura D, Aoki T, Tsuzuki K. Electroretinogram in diabetic retinopathy. Arch Ophthalmol 1962; 68: 19.

    Google Scholar 

  8. Fulton AB, Hansen RM. Photoreceptor function in infants and children with a history of mild retinopathy of prematurity. J Opt Soc Amer 1996; 13: 566–71.

    Google Scholar 

  9. Bresnick GH, Palta M. Oscillatory potentials amplitudes relation to severity of diabetic retinopathy. Arch Ophthalmol 1987; 105: 929–33.

    Google Scholar 

  10. Johnson MA, Marcus S, Elman MJ, McPhee TJ. Neovascularization in central retinal vein occlusion. Electroretinographic findings. Arch Ophthalmol 1988; 106: 348–52.

    Google Scholar 

  11. Ravilico G, Rinaldi G, Solimano N, Bellini G, Cosenzi A, Sacerdote A, Bocin E. Oscillatory potentials in patients with treated hypertension. Ophthalmologica 1995; 209: 187–9.

    Google Scholar 

  12. Polo A, Lazzarino L, Pilzorno F, Beltram E, Zanette G. Retinal oscillatory potential abnormalities in patients with chronic renal failure, before and after dialytic treatment. Doc Ophthalmol 1992; 82: 257–65.

    Google Scholar 

  13. Algvere P, Westbeck S. Human ERG in response to double flashes of light during the course of dark adaptation: A Fourier analysis of the oscillatory potentials. Vision Res 1972; 12: 195–214.

    Google Scholar 

  14. Vallabhan G, Kristiansen S, Price J, Young RS. Effect of adaptation and wavelength on the power spectrum of human oscillatory potentials. Doc Ophthalmol 1988; 69: 145–51.

    Google Scholar 

  15. Marmor MF, Zrenner E. Standard for clinical electroretinogram (1999 update). Doc Ophthalmol 1999; 97: 143–56.

    Google Scholar 

  16. Derr PJ, Meyer AU, Haupt EJ, Brigell MG. Realization of a prefiltering technique used in the extraction of the oscillatory potential from the electroretinogram. Invest Ophthalmol Vis Sci [Abstract] 1999; 40: s16. Abnr 81.

    Google Scholar 

  17. Sandberg MA, Hokyung L, Matthews GP, Gaudio AR. Relationship of oscillatory potential amplitude to a-wave slope over a range of flash luminances in normal subjects. Invest Ophthalmol Vis Sci 1991; 32: 1508–16.

    Google Scholar 

  18. Bui BV, Weisinger HS, Sinclair AJ, Vingrys AJ. Comparison of guinea pig electroretiograms measured with bipolar corneal and unipolar intravitreal electrodes. Doc Ophthalmol 1998; 95: 15–34.

    Google Scholar 

  19. Severns ML, Johnson MA, Bresnick GH. Methodologic dependence of electroretinogram oscillatory potentials amplitudes. Doc Ophthalmol 1994; 86: 23–31.

    Google Scholar 

  20. Van Den Torren K, Groeneweg G, Van Lith G. Measuring oscillatory potentials: Fourier analysis. Doc Ophthalmol 1988; 69: 153–59.

    Google Scholar 

  21. National Health and Medical Research Council. Australian code of practice for the care and use of animals for scientific purposes. Canberra: Australian Government Publishing Service, 1990.

    Google Scholar 

  22. Penn JS, Anderson RE. Effects of light history on the rat retina. Prog Ret Res 1991; 11: 75–98.

    Google Scholar 

  23. Vingrys AJ, Bui BV. Postnatal development of postreceptoral ERG function in albino and pigmented guinea pigs (Cavia porcellus). Invest Ophthalmol Vis Sci [Abstract] 1999; 40: s22. Abnr 116.

    Google Scholar 

  24. Bui BV, Vingrys AJ. Postnatal development of receptoral responses in pigmented and albino guinea pigs. Doc Ophthalmol 1999; 99: 151–70.

    Google Scholar 

  25. Matthews GP, Crane WG, Sandberg MA. Effects of 2-Amino-4-Phosphonobutyric acid (APB) and Glycine on the oscillatory potentials of the rat electroretingram. Exp Eye Res 1989; 49: 777–87.

    Google Scholar 

  26. Bach M, Meigen T. Do's and don'ts in Fourier analysis of steady-state potentials. Doc Ophthalmol 1999; 99: 69–82.

    Google Scholar 

  27. Derr P, Meyer AU, Brigell mg, Haupt EJ. A signal conditioning approach for extraction of the oscillatory potential from the electroretinogram. Invest Ophthalmol Vis Sci 1998; 39: s181. Abnr 863.

    Google Scholar 

  28. Hood DC, Birch DG. A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Vis Neurosci 1990; 5: 379–87.

    Google Scholar 

  29. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical recipes in C. The art of scientific computing. 2nd Edition. New York: Cambridge University Press, 1992.

    Google Scholar 

  30. Gur M, Zeevi Y. Frequency-domain analysis of the human electroretinogram. J Opt Soc Amer 1980; 70: 53–9.

    Google Scholar 

  31. Bui BV, Sinclair AJ, Vingrys AJ. Electroretinograms of albino and pigmented guinea pigs (Cavia porcellus). Aust NZ J Ophthalmol 1998; 26(Suppl): S98–S100.

    Google Scholar 

  32. Severns ML, Johnson MA, Bresnick GH. Methodologic dependence of electroretinogram oscillatory potential amplitudes. Doc Ophthalmol 1994; 86: 23–31.

    Google Scholar 

  33. Van der Torren K, Groeneweg G, Van Lith G. Measuring oscillatory potentials: Fourier analysis. Doc Ophthalmol 1988; 69: 153–9.

    Google Scholar 

  34. Fatechand R. Rod and cone generation of wavelets in the frog electroretinogram. Vision Res 1978; 18: 229–32.

    Google Scholar 

  35. Robson JG, Frishman LJ. A kinetic model of the contribution of the rod photocurrent to the electroretinogram. International Society for Clinical Electrophysiology of Vision, XXXVIII Symposium 2000; P2.12, 127.

    Google Scholar 

  36. Ikeda H, Ripps H. The electroretinogram of a cone-monochromat. Arch Ophthalmol 1966; 75: 513–7.

    Google Scholar 

  37. Arden GB, Carter RM, Hogg CR, Powell DJ, Ernst WJK, Clover GM, Lyness AL, Quilan MP. A modified ERG technique and the result obtained in X-linked retinitis pigmentosa. Br J Ophthalmol 1983; 67: 419–30.

    Google Scholar 

  38. Holopigian K, Greenstein VC, Seiple W, Hood DC, Carr RE. Evidence for photoreceptor changes in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci 1997; 38: 2355–65.

    Google Scholar 

  39. King-Smith PE, Loffing DH, Jones R. Rod and cone ERGs and their oscillatory potentials. Invest Ophthalmol Vis Sci 1986; 27: 270–3.

    Google Scholar 

  40. Wachtmeister L. Further studies of the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG) I.GABA and glycine antagonists. Acta Ophthalmologica 1980; 58: 712–28.

    Google Scholar 

  41. Jacobi P, Osswald H, Jurklies B, Zrenner E. Neuromodulator effects of Renin-Angiotensin system on the cat electroretinogram. Invest Ophthalmol Vis Sci 1994; 35: 973–80.

    Google Scholar 

  42. Lachapelle P, Little J, Roy MS. The electroretinogram in Stargart's disease and fundus flavimaculatus. Doc Ophthalmol 1990; 73: 395–404.

    Google Scholar 

  43. Lachapelle P, Little J, Palomeno R. The photopic electroretinogram in congenital stationary night blindness with myopia. Invest Ophthalmol Vis Sci 1983; 24: 442–50.

    Google Scholar 

  44. Heynen H, Wachtmeister L, Van Norren D. Origin of the oscillatory potentials in the primate retina. Vision Res 1985; 25: 1365-73.

    Google Scholar 

  45. Haupt EJ, Derr P, Meyer AU, Brigell MG. Comparison of 1-and 2-envelope models of frequency and amplitude parameters of electroretinogram oscillatory potentials for identification of CRVO eyes. Invest Ophthalmol Vis Sci [Abstract] 1999; 40: s17. Abnr 87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bui, B.V., Armitage, J.A. & Vingrys, A.J. Extraction and modelling of oscillatory potentials. Doc Ophthalmol 104, 17–36 (2002). https://doi.org/10.1023/A:1014401502915

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014401502915

Navigation