Skip to main content
Log in

Lacustrine and palustrine carbonate petrography: an overview

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Lacustrine limestones were formerly identified by their faunistic (limnea, planorbis) and floristic (Charophytes) content. For 30 years, indications of pedogenesis have been found in many lacustrine deposits, and consequently the concept of palustrine limestone was defined.

Lacustrine fabrics are not that numerous: varved, laminated, homogeneous, peloidal, brecciated, gravelly, bioturbated (burrows), bioclastic, algal, and stromatolitic. Detrital beds are sometimes present and are interpreted as bottomset deposits. Palustrine fabrics result from exposure and pedogenesis of lacustrine mud. The main processes involved in this evolution are: cracking, with planar, curved, craze and skew planes, colonization by plants resulting in root traces, marmorization (redistribution of iron due to water table fluctuation), and redistribution of carbonates (needles, subspherical or cylindrical vertical nodules, carbonate coatings, early and late diagenetic crystals, Microcodium). Carbonate palustrine features can be associated with other minerals: palygorskite, gypsum, or silica. Alternation of lacustrine sedimentation and exposure/pedogenesis leads to the pseudo-microkarst facies resulting from enlargement of the complex network of root traces and horizontal cracks. The voids in the pseudo-microkarst facies are infilled with a polyphased internal sediment composed of carbonate and vadose silt and phreatic and vadose cements. Traces of exposure and pedogenesis are less in evidence in lacustrine bioclastic sands and algal-stromatolitic limestones. Finally, under certain conditions, the surficial laminar horizon and its associated perlitic crust (ooids) develops on palustrine muds and form a desert stromatolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aassoumi, H., J. Broutin, M. El Wartiti, P. Freytet, J.-C. Koeniguer, C. Quesada, F. Simancas & N. Toutin-Morin, 1992. Pedological nodules with cone-in-cone structure in the Permian of Sierra Morena (Spain) and Central Morocco. Carbonates & Evaporites 7: 140–149.

    Google Scholar 

  • Bates, R. L. & J. A. Jackson, 1980. Glossary of Geology. American Geological Institute, Falls Church, 751 pp.

    Google Scholar 

  • Black, M., 1933. The algal sediments of Andros Islands, Bahamas. Phil. Trans. Lond. B. 222: 165–192.

    Google Scholar 

  • Boer, P. L. de, 1981. Mechanical effect of microorganisms in intertidal bedform migration. Sedimentology 28: 129–132.

    Google Scholar 

  • Bradley, W. H., 1929. Algal reefs and oolithes of the Green River Formation. U.S. Geol. Survey Prof. Paper 154–G: 203–223.

    Google Scholar 

  • Brewer, R., 1964. In Fabric and Mineral Analysis of Soils. John Wiley, London, 470 pp.

    Google Scholar 

  • Brunskill, G. T., 1969. Fayetteville Green Lake, New-York. II, Precipitation and sedimentation of calcite in a meromicric lake with laminated sediments. Limnol. Oceanogr. 14: 830–847.

    Google Scholar 

  • Chafetz, H. S., 1986. Marine peloids: a product of bacterially induced precipitation of calcite. J. Sed. Petrol. 56: 812–817.

    Google Scholar 

  • De Geer, G., 1912. A geochronology of the last 12,000 years. 11th Intern. Congr. Geol. 1910: 241–253.

    Google Scholar 

  • Dudgeon, D., 1982. An investigation into some physical and biotic effects of flooding on reservoir mud previously subjected to a period of aerial exposure. Hydrobiologia 97: 27–35.

    Google Scholar 

  • Eardly, A. J., 1938. Sediments of Great Salt Lake, Utah. Am. Assoc. Petrol. Geol. Bull. 22: 1305–1411.

    Google Scholar 

  • Eardley, A. J. & V. Gvosdetsky, 1960, Analysis of Pleistocene core from Great Salt Lake, Utah. Bull. Geol. Soc. Am. 71: 1323–1344.

    Google Scholar 

  • Fahraeus, L. E., R. M. Slatt & G. S. Nowlan, 1974. Origin of carbonate pseudopellets. J. Sed. Petrol. 44: 27–29.

    Google Scholar 

  • Fayol, H., 1886. Résumé de la théorie des deltas et histoire de la formation du bassin de Commentry. Bull. Soc. Géol. Fr. XVI: 968–978.

    Google Scholar 

  • Forel, F. A., 1901. Le Léman, monographie limnologique, III. F. Rouge, Lausanne, 715 pp.

    Google Scholar 

  • Fort, M., D. W. Burbank & P. Freytet, 1989. Lacustrine sedimentation in a semi-arid alpine setting: an example from Ladakh, Northwestern Himalayas. Quat. Res. 31: 332–350.

    Google Scholar 

  • Freytet, P., 1964. Le Vitrollien des Corbières orientales: réflexions sur la sédimentation 'lacustre' nord-pyrénéenne; divgation fluviatile, biorhexistasie, pédogénèse. Rev. Géogr. Phys. Géol. Dyn. VI: 179–199.

    Google Scholar 

  • Freytet, P., 1971. Paléosols résiduels et paléosols alluviaux hydromorphes dans le Crétacé supérieur et l'Eocène basal en Languedoc. Rev. Géogr. Phys. Géol. Dyn. XIII: 245–268.

    Google Scholar 

  • Freytet, P., 1973. Petrography and paleoenvironments of continental carbonated deposits with a particular reference to Upper Cretaceous and Lower Eocene of Languedoc, Southern France. Sed. Geol. 10: 25–60.

    Google Scholar 

  • Freytet, P., 1984. Les sédiments lacustres carbonatés et leur transformation par émersion et pédogénèse. Importance de leur identification pour les reconstitutions paléogéographiques. Bull. Centre Rech. Explor.-Produc. Elf Aquitaine 8: 223–247.

    Google Scholar 

  • Freytet, P., 1997. Non-marine, Permian to Holocene algae from France and adjacent countries I. Ann. Paleontol. 83: 289–332.

    Google Scholar 

  • Freytet, P., 1998. Non-marine, Permian to Holocene algae from France and adjacent countries II. Ann. Paleontol. 84: 3–51.

    Google Scholar 

  • Freytet, P., 2000. Distribution and paleoecology of non marine algae and stromatolites: II, the Limagne of Allier, Oligo-Miocene lake (Central France). Ann. Paleontol. 86: 3–57.

    Google Scholar 

  • Freytet, P. & J.-C. Plaziat, 1982. Continental carbonate sedimentation and pedogenesis-Late Cretaceous and Early Tertiary of Southern France. In Purser, B. H. (ed.), Contrib. Sedimentology, Schweizerbart'sche Verlag, Stuttgart, 12, 217 pp.

    Google Scholar 

  • Freytet, P. & E. P. Verrecchia, 1998. Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology 45: 535–563.

    Google Scholar 

  • Freytet, P., F. Baltzer, O. Conchon., J.-C. Plaziat & B. H. Purser, 1994. Signification hydrologique et climatique des carbonates continentaux quaternaires de la bordure du désert oriental égyptien (côte de la mer Rouge). Bull. Soc. Géol. Fr. 165: 593–601.

    Google Scholar 

  • Freytet P., N. Toutin-Morin, J. Broutin, P. Debriette, M. Durand, M. El Wartiti, G. Gand, H. Kerp, F. Orszag, Y. Paquette, O. Ronchi & J. Sarfati, 1999. Paleoecology of non-marine algae and stromatolites-Permian of France and adjacent countries. Ann. Paleont. 85: 99–153.

    Google Scholar 

  • Gilbert, G. K., 1885. The topographic features of lake shores. Ann. Rep. U.S. Geol. Survey 5: 69–123.

    Google Scholar 

  • Hawley, N. & C. H. Lee, 1999. Sediment resuspension and transport in Lake Michigan during stratified period. Sedimentology 46: 791–805.

    Google Scholar 

  • Johnson, J. H., 1937. Algae and algal limestone from the Oligocene of South Park, Colorado. Bull. Geol. Soc. Am. 48: 1227–1235.

    Google Scholar 

  • Kahle, C. F., 1977. Origin of subaerial Holocene calcareous crusts: role of algae, fungi, and sparmicritization. Sedimentology 42: 413–435.

    Google Scholar 

  • Kalkowsky, E., 1908. Oolith und Stromatolith im norddeutschen Bundsandstein, Z. Deutsche geologische Gesellschaft, Berlin, 60: 68–125.

    Google Scholar 

  • Kelts, K. & K. J. Hsü, 1978. Freshwater carbonate sedimentation. In Lerman, A. (ed.), Lakes, Chemistry, Geology, Physics. Springer, Berlin, 295–323.

    Google Scholar 

  • Klappa, C. F., 1980, Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology 27: 613–629.

    Google Scholar 

  • Mac Issac, H. T. & P. Rocha, 1995. Effects of suspended clay on Zebra mussel (Dreisena polymorpha) foeces and pseudofoeces production. Arch. Hydrobiol. 135: 53–64.

    Google Scholar 

  • Morrison, R. B., 1964. Lake Lahontan: geology of the southern Carson Desert, Nevada. U.S. Geol. Survey Prof. Paper 401, 165 pp.

  • Neumann, A. G., C. D. Gebelin & T. P. Scoffin, 1970. The composition, structure and erodability of subtidal mats, Abaco, Bahamas. J. Sed. Petrol. 40: 274–297.

    Google Scholar 

  • Platt, N. H. & V. P. Wright, 1992. Lacustrine carbonates: facies models, facies distribution and hydrocarbon aspects. In Anadon, P., L. Cabrera & K. Kelts (eds), Lacustrine Facies Analysis. IAS spec. publ. 13. Blackwell, Oxford, 57–74.

    Google Scholar 

  • Plaziat, J. C. & P. Freytet, 1978. Le pseudomicrokarst pédologique: un aspect particulier des paléopédogénèses développées sur les dépôts calcaires lacustres dans le Tertiaire du Languedoc. C. r. Acad. Sci. Paris D 286: 1661–1664.

    Google Scholar 

  • Sturm, M. & A. Matter, 1978. Turbidites and varves in Lake Brienz (Switzerland): deposition of calstic detritus by density currents. In Matter, A. & M. E. Tucker (eds), Modern and Ancient Lake Sediments. IAS. spec. publ. 2. Blackwell, Oxford, 147–168.

    Google Scholar 

  • Tevesz, M. J. S, F. M. Soster & P. L. McCall, 1981. The effects of size selective feeding by Oligochaetes on the physical properties of river sediment. J. Sed. Petrol. 50: 561–568.

    Google Scholar 

  • Thompson, J. B., F. G. Ferris & T. H. D. Smith, 1990. Geomicrobiology and sedimentology of the mixolimnion and chemocline in Fayetteville Green lake, New York. Palaios 5: 52–75.

    Google Scholar 

  • Verrecchia, E. & P. Freytet, 1987. Interférence pédogénèse sédimentation dans les croûtes calcaires-Proposition d'une nouvelle méthode d'étude: l'analyse séquentielle. In Fédoroff, N. (ed.), Soil Micromorphology. AFES, Paris, 555–561.

    Google Scholar 

  • Verrecchia, E. P., 1994. L'origine biologique et superficielle des croûtes zonaires. Bull. Soc. Géol. Fr. 165: 583–592.

    Google Scholar 

  • Verrecchia, E. P. & K. Verrecchia, 1994. Needle-fiber calcite: critical review and proposed classification. J. Sed. Res. A64: 650–664.

    Google Scholar 

  • Verrecchia, E. P., P. Freytet, K. Verrecchia & J.-L. Dumont, 1995. Spherulites in calcrete laminar crust: biogenic CaCO3 precipitation as a major contributor to crust formation. J. Sed. Res. A65: 690–700.

    Google Scholar 

  • Verrecchia, E. P., P. Freytet, K. Verrecchia & J.-L Dumont, 1996. Spherulites in calcrete laminar crust: biogenic CaCO3 precipitation as a major contributor to crust formation-Reply. J. Sed. Res. A66: 1041–1044.

    Google Scholar 

  • Winsborough, B. M. & S. Golubic, 1987. The role of diatoms in stromatolite growth: two examples from modern freshwater settings. J. Phycol. 23: 195–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freytet, P., Verrecchia, E.P. Lacustrine and palustrine carbonate petrography: an overview. Journal of Paleolimnology 27, 221–237 (2002). https://doi.org/10.1023/A:1014263722766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014263722766

Navigation