Skip to main content
Log in

Quantification of Free Fatty Acids in Human Cerebrospinal Fluid

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Free fatty acids (FFA) in cerebrospinal fluid (CSF) are well-recognized markers of brain damage in animal studies. Information is limited regarding human CSF in both normal and pathological conditions. Samples of CSF from 73 patients, who had undergone lumbar puncture for medically indicated reasons, came from a core laboratory upon completion of ordered tests. Using high performance liquid chromatography, mean FFA concentrations (μg/L ± SEM) were: arachidonic 26.14 ± 3.44; docosahexaenoic 60.74 ± 5.70; linoleic 105.07 ± 10.98; myristic 160.38 ± 16.17; oleic 127.91 ± 10.13; and palmitic 638.34 ± 37.27. No differences in FFA concentrations were seen with gender, race, age, and/or indication for lumbar puncture. This is the first study to document normal human CSF FFA concentrations in a large series. Further characterization of FFA in pathological conditions may provide markers for evaluating clinical treatments and assisting in prognostication of neurological disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bazan, N. G. 1970. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218:1–10.

    Google Scholar 

  2. Gardiner, M., Nilsson, B., Rehncrona, S., and Siesjo, B. K. 1981. Free fatty acids in the brain in moderate and severe hypoxia. J. Neurochem. 52:946–951.

    Google Scholar 

  3. Rehncrona, S., Westerberg, E., Akesson, B., and Siesjo, B. K. 1982. Brain cortical fatty acids and phospholipids during and following complete and severe ischemia. J. Neurochem. 38:84–93.

    Google Scholar 

  4. Yasuda, H., Kishiro, K., Izumi, N., and Nakanishi, M. 1985. Biphasic liberation of arachidonic and stearic acids during cerebral ischemia. J. Neurochem. 45:168–172.

    Google Scholar 

  5. Siesjo, B. K. 1992. Pathophysiology and treatment of focal cerebral ischemia. Part II: Mechanisms of damage and treatment. J. Neurosurg. 77:337–354.

    Google Scholar 

  6. Dhillon, H. S., Dose, J. M., Scheff, S. W., and Prasad, M. R. 1997. Time course of changes in lactate and free fatty acids after experimental brain injury and relationship to morphologic damage. Exp. Neurol. 146:240–249.

    Google Scholar 

  7. Zamir, I., Grushka, E., and Cividalli, G. 1991. High-performance liquid chromatographic analysis of free palmitic and stearic acid in cerebrospinal fluid. J. Chromatogr. 565:424–429.

    Google Scholar 

  8. Berry, J. F., Bovis, M., and Logothetis, J. 1965. Determination of the fatty acid composition of cerebrospinal fluid by gas-liquid chromatography. Neurology 15:1089–1094.

    Google Scholar 

  9. Illingsworth, D. R. and Glover, J. 1971. The composition of lipids in cerebrospinal fluid of children and adults. J. Neurochem. 18:769–776.

    Google Scholar 

  10. Schippling, S., Kontush, A., Arlt, S., Buhmann, C., Sturenburg, H. J., Mann, U., Muller-Thomsen, T., and Beisiegel, U. 2000. Increased lipoprotein oxidation in Alzheimer's disease. Free Rad. Bio. Med. 28:351–360.

    Google Scholar 

  11. Estevez, A. Y. and Phillis, J. W. 1997. The phospholipase A2 inhibitor, quinacrine, reduces infarct size in rats after transient middle cerebral artery occlusion. Brain Res. 52:203–208.

    Google Scholar 

  12. Phillis, J. W. 1996. Cerebroprotective action of the phospholipase inhibitor quinacrine in the ischemia/reperfused gerbil hippocampus. Life Sci. 58:97–101.

    Google Scholar 

  13. Powers, W. J. 1981. Cerebrospinal fluid to serum glucose ratios in diabetes mellitus and bacterial meningitis. Am. J. Med. 71:217–220.

    Google Scholar 

  14. Bailey, E. M., Domenico, P., and Cunha, B. A. 1990. Bascterial or viral meningitis? Measuring lactate in CSF can help you know quickly. Postgrad. Med. 88:217–219.

    Google Scholar 

  15. Wood, R. and Lee, T. 1983. High performance liquid chromatography of fatty acids: quatitative analysis of saturated monoenoic, polyenoic, and geometrical isomers. J. Chromatogr. 254:237–246.

    Google Scholar 

  16. Mehta, A., Oeser, A., and Carlson, M. G. 1998. Rapid quantitation of free fatty acids in human plasma by high-performance liquid chromatography. J. Chromatogr. 719:9–23.

    Google Scholar 

  17. Dhillon, H. S., Carman, H. M., Zhang, D., Scheff, S. W., and Prasad, M. R. 1999. Severity of experimental brain injury on lactate and free fatty acid accumulation and Evans blue extravasation in the rat cortex and hippocampus. J. Neurotrauma 16:455–469.

    Google Scholar 

  18. Sun, D. and Gilboe, D. D. 1994. Ischemia-induced changes in cerebral mitochondrial free fatty acids, phospholipids, and respiration in the rat. J. Neurochem. 62:1921–1928.

    Google Scholar 

  19. Homayoun, P., Parkins, N. E., Soblosky, J., Carey, M. E., Rodriguez de Turco, E. B., and Bazan, N. G. 2000. Cortical impact injury in rats promotes a rapid and sustained increase in polyunsaturated free fatty acids and diacylglycerols. Neurochem. Res. 25:269–276.

    Google Scholar 

  20. Pilitsis, J. G., Diaz, F. G., O'Regan, M. H., and Phillis, J. W. 2001. Inhibition of Na+/H+ exchange by SM-20220 attenuates free fatty acid efflux in rat cerebral cortex during ischemiareperfusion injury. Brain Res. 913:156–158.

    Google Scholar 

  21. Pilitsis, J. G., Diaz, F. G., O'Regan, M. H., and Phillis, J. W. 2001. Inhibition of Na+/Ca++ exchange by KB-R7943, a novel selective antagonist, attenuates phosphoethanolamine and free fatty acid efflux in rat cerebral cortex during ischemia-reperfusion injury. Brain Res. 916:192–198.

    Google Scholar 

  22. Kubota, M., Nakane, M., Narita, K., Nakagomi, T., Tamura, A., Hisaki, H., Shimasaki, H., and Ueta, N. 1998. Mild hypothermia reduces the rate of metabolism of arachidonic acid following postischemic reperfusion. Brain Res. 779:297–300.

    Google Scholar 

  23. Westcott, J. Y., Murphy, R. C., and Stenmark, K. 1987. Eicosanoids in human ventricular cerebrospinal fluid following severe brain injury. Prostaglandins 34:877–887.

    Google Scholar 

  24. Fitzpatrick, F. A. and Soberman, R. 2001. Regulated formation of eicosanoids. J. Clin. Invest. 107:1347–1351.

    Google Scholar 

  25. Tetzloff, S. U. and Bizzozero, O. A. 1998. Palmitoylation of proteolipid protein from rat brain myelin using endogenously generated 18O-fatty acids. J. Biol. Chem. 273:279–285.

    Google Scholar 

  26. Kokoglu, E., Tuter, Y., Yazici, Z., Sandikci, K. S., Sonmez, H., Ulakoglu, E. Z., and Ozyurt, E. 1998. Profiles of the fatty acids in the plasma membrane of human brain tumors. Cancer Biochem. Biophys. 16:301–312.

    Google Scholar 

  27. Hanai, T., Hashimoto, T., Nishiwaki, K., Ono, M., Akomo, Y., Tanaka, M., Mizuno, I., and Yura, J. 1993. Comparison of prostanoids and their precursor fatty acids in human hepatocellular carcinoma and noncancerous reference tissues. J. Surg. Res. 54:57–60.

    Google Scholar 

  28. Pontiroli, A. E., Manzoni, M. F., Malighetti, M. E., and Lanzi, R. 1996. Restoration of growth hormone response to GH-releasing hormone in elderly and obese subjects by acute pharmacological reduction of plasma free fatty acids. J. Clin. Endocrinol. Metab. 81:3998–4001.

    Google Scholar 

  29. Nam, S. Y., Kim, K. R., Lee, H. C., Nam, M. S., Cho, J. H., and Huh, K. B. 1996. Long-term administration of acipomox potentiates growth hormone response to growth hormone-releasing hormone by decreasing serum free fatty acid in obesity. Metabolism 45:594–597.

    Google Scholar 

  30. Spector, A. A. 2001. Plasma free fatty acid and lipoproteins as sources of polyunsaturated fatty acid for the brain. J. Mol. Neurosci. 16:159–165.

    Google Scholar 

  31. Reiber, H. and Peter, J. B. 2001. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J. Neurol. Sci. 184:101–122.

    Google Scholar 

  32. Roine, R., Somer, H., Kaste, M., Viinikka, L., and Karonen, S. L. 1989. Neurological outcome after out-of-hospital cardiac arrest. Arch. Neurol. 46:753–756.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilitsis, J.G., Diaz, F.G., Wellwood, J.M. et al. Quantification of Free Fatty Acids in Human Cerebrospinal Fluid. Neurochem Res 26, 1265–1270 (2001). https://doi.org/10.1023/A:1014227231130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014227231130

Navigation