Skip to main content
Log in

Towards the Evaluation of the Relevant Degrees of Freedom in Nonlinear Partial Differential Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate an operator renormalization group method to extract and describe the relevant degrees of freedom in the evolution of partial differential equations. The proposed renormalization group approach is formulated as an analytical method providing the fundamental concepts of a numerical algorithm applicable to various dynamical systems. We examine dynamical scaling characteristics in the short-time and the long-time evolution regime providing only a reduced number of degrees of freedom to the evolution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. P. Kadanoff, Physics 2:263 (1966).

    Google Scholar 

  2. K. G. Wilson, Phys. Rev. B 4:3174 (1971). Phys. Rev. B 4:3184 (1971). Phys. Rev. Lett. 28:548 (1972).

    Google Scholar 

  3. K. G. Wilson. Rev. Mod. Phys. 47:773 (1975).

    Google Scholar 

  4. S. K. Ma, Modern Theory of Critical Phenomena (Benjamin/Cummings Publishing Company, Reading, 1976).

    Google Scholar 

  5. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49:435 (1977).

    Google Scholar 

  6. D. Forster, D. Nelson, and M. Stephen, Phys. Rev. A 16:732 (1977).

    Google Scholar 

  7. M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56:889 (1986).

    Google Scholar 

  8. E. Medina, T. Hwa, M. Kardar, and Y. Zhang, Phys. Rev. A 39:3053 (1989).

    Google Scholar 

  9. E. Frey and U. C. Taeuber, Phys. Rev. E 50:1024 (1994).

    Google Scholar 

  10. T. Nattermann and L. H. Tang, Phys. Rev. A 45:7156 (1992).

    Google Scholar 

  11. J. P. Bouchaud and M. E. Cates, Phys. Rev. E 47:R1455 (1993).

    Google Scholar 

  12. M. Schwartz and S. F. Edwards, Europhys. Lett. 20:301 (1992).

    Google Scholar 

  13. T. Halpin-Healy, Phys. Rev. Lett. 62:442 (1990). Phys. Rev. A 42:711 (1990).

    Google Scholar 

  14. D. E. Wolf and J. Kertész, Europhys. Lett. 4:651 (1987).

    Google Scholar 

  15. B. M. Forrest and L. Tang, J. Statist. Phys. 60:181 (1990).

    Google Scholar 

  16. M. Beccaria and G. Curci, Phys. Rev. E, 4560 (1994).

  17. S. R. White, Phys. Rev. B 48:10345 (1993).

    Google Scholar 

  18. J. R. de Sousa, Phys. Lett. A 216:321 (1996).

    Google Scholar 

  19. M. A. Martin-Delgado, J. Rodríguez-Laguna, and G. Sierra, Nucl. Phys. B 473:685 (1996).

    Google Scholar 

  20. A. Degenhard, J. Phys. A: Math. Gen. 33:6173 (2000).

    Google Scholar 

  21. J. Gonzales, M. A. Martin-Delgado, G. Sierra, and A. H. Vozmediano, New and old real-space renormalization group methods, in Quantum Electron Liquids and High-T c Superconductivity, Lecture Notes in Physics, Vol. 38 (Springer, Berlin, 1995).

    Google Scholar 

  22. N. Goldenfeld, A. McKane, and Q. Hou, J. Statist. Phys. 93:699 (1998).

    Google Scholar 

  23. Q. Hou, N. Goldenfeld, and A. McKane. Phys. Rev. E 63:36125 (2001).

    Google Scholar 

  24. A. Degenhard and J. Rodríguez-Laguna, Phys. Rev. E, cond-mat/0106155 (2001) (in press).

  25. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipies. The Art of Scientific Computing (Cambridge, University Press, 1992).

    Google Scholar 

  26. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (New York, Academic Press, 1981).

    Google Scholar 

  27. J. M. Burgers, The Nonlinear Diffusion Equation (Riedel, Boston, 1974).

    Google Scholar 

  28. T. Halpin-Healy and Y.-C. Zhang. Phys. Rep. 254:215 (1995).

    Google Scholar 

  29. J. Krug, Phys. Rev. Lett. 72(18):2907 (1994).

    Google Scholar 

  30. J. Krug and H. Spohn. Phys. Rev. A 38(8):4271 (1988).

    Google Scholar 

  31. S. E. Esipov and T. J. Newman, Phys. Rev. E 48(6):1046 (1993).

    Google Scholar 

  32. J. G. Amar and F. Family, Phys. Rev. E 47(3):1595 (1993).

    Google Scholar 

  33. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1984).

    Google Scholar 

  34. C. Itzykson and J. M. Drouffe, Statistical Field Theory (University Press, Cambridge, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degenhard, A., Rodríguez-Laguna, J. Towards the Evaluation of the Relevant Degrees of Freedom in Nonlinear Partial Differential Equations. Journal of Statistical Physics 106, 1093–1120 (2002). https://doi.org/10.1023/A:1014041904951

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014041904951

Navigation