Skip to main content
Log in

The genomics of land plant chloroplasts: Gene content and alteration of genomic information by RNA editing

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The entire nucleotide sequence of the chloroplast genome has been determined from 12 land plants. The gene content and arrangement are relatively uniform from species to species, and the genome contains an average of 111 identified gene species (except Epifagus). Chloroplast genes can be classified into three main categories: Genes for the photosynthetic apparatus, those for the transcription/translation system, and those related to biosyntheses. The genes encoding components of the photosynthesis apparatus have been identified by protein chemical analyses from higher plants, Chlamydomonas and cyanobacteria, and then by chloroplast transformation techniques using tobacco and Chlamydomonas. The genes for subunits of RNA polymerases and of ribosomes were initially deduced similarity to those in E. coli, and later confirmed by protein analyses. Coding information is often modified at the level of transcripts by RNA editing (mostly C-U changes), resulting in amino acid substitutions and creation of novel reading frames. Perspectives of chloroplast genomics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdallah F, Salamini F and Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5: 141–142

    Article  PubMed  CAS  Google Scholar 

  • Barkan A and Goldschmidt- Clermont M (2000) Participation of nuclear genes in chloroplast gene expression. Biochimie 82: 559–572

    Article  PubMed  CAS  Google Scholar 

  • Bock R (2000) Sense from nonsense: How the genetic information of chloroplasts is altered by RNA editing. Biochimie 82: 549–557

    Article  PubMed  CAS  Google Scholar 

  • Bock R, Kössel H and Maliga P (1994) Introduction of a heterologous editing site into the tobacco plastid genome: The lack of RNA editing leads to a mutant phenotype. EMBO J 13: 4623–4628

    PubMed  CAS  Google Scholar 

  • Boudreau E, Takahashi Y, Lemieux C, Turmel M and Rochaix JD (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the Photosystem I complex. EMBO J 16: 6095–6104

    Article  PubMed  CAS  Google Scholar 

  • Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB and Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534–1538

    PubMed  CAS  Google Scholar 

  • Burrows PA, Sazanov LA, Svab Z, Maliga P and Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17: 868–876

    Article  PubMed  CAS  Google Scholar 

  • Corneille S, Lutz K and Maliga P (2000) Conservation of RNA editing between rice and maize plastids: are most editing events dispensable? Mol Gen Genet 264: 419–424

    Article  PubMed  CAS  Google Scholar 

  • Cummings MP, King LM and Kellogg EA (1994) Slipped-strand mispairing in a plastid gene:rpoC2 in grasses (Poaceae). Mol Biol Evol 11: 1–8

    PubMed  CAS  Google Scholar 

  • Douglas SE (1998) Plastid evolution: origins, diversity, trends. Curr Opin Genet Dev 8: 655–661

    Article  PubMed  CAS  Google Scholar 

  • Eddy SR (1999) Noncoding RNA genes. Curr Opin Genet Dev 9: 695–699

    Article  PubMed  CAS  Google Scholar 

  • Edwards K, Bedbrook J, Dyer T and Kössel H (1981) 4.5S rRNA from Zea mays chloroplasts shows structural homology with the 3′ end of prokaryotic 23S rRNA. Biochem Int 2: 533–538

    CAS  Google Scholar 

  • Ems SC, Morden CW, Dixon CK, Wolfe KH, De Pamphilis CW and Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29: 721–733

    Article  PubMed  CAS  Google Scholar 

  • Freyer R, Kiefer-Meyer MC and Kössel H (1997) Occurrence of plastid RNA editing in all major lineages of land plants. Proc Natl Acad Sci USA 94: 6285–6290

    Google Scholar 

  • Gantt JS, Baldauf SL, Calie PJ, Weeden NF and Palmer JD (1991) Trasfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. EMBO J 10: 3073–3078

    PubMed  CAS  Google Scholar 

  • Gallagher TF, Smith SM, Jenkins GI and Ellis RJ (1984) Photoregulation of transcription of the nuclear and chloroplast genes for ribulose bisphosphate carboxylase. In: Ellis RJ (ed) Chloroplast Biogenesis, pp 303–319. Cambridge University Press, Cambridge

    Google Scholar 

  • Gray JC (1987) Genetics and synthesis of chloroplast membrane proteins. In: Amesz J (ed) Photosynthesis, pp 319–342. Elsevier, Amsterdam

    Google Scholar 

  • Green LS, Laudenbach DE and Grossman AR (1989) A region of a cyanobacterial genome required for sulfate transport. Proc Natl Acad Sci USA 86: 1949–1953

    Article  PubMed  CAS  Google Scholar 

  • Guera A, De Nova PG and Sabater B (2000) Identification of the Ndh (NAD(P)H-plastoquinone-oxidoreductase) complex in etioplast membranes of barley: Changes during photomorphogenesis of chloroplasts. Plant Cell Physiol 41:49–59

    PubMed  CAS  Google Scholar 

  • Hager M, Biehler K, Illerhaus J, Ruf S and Bock R (1999) Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b(6)f complex. EMBO J 18: 5834–5842

    Article  PubMed  CAS  Google Scholar 

  • Herrmann RG, Westholf P, Alt J, Tittgen J and Nelson N (1985) Thylakoid membrane protein and their genes. In: Von Vloten-Doting L, Groot GSP and Hall TC (eds) Molecular Form and Function of the Plant genome, pp 233–256. Plenum Press, New York

    Google Scholar 

  • Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K and Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185–194

    PubMed  CAS  Google Scholar 

  • Hirose T and Sugiura M (1996) Cis-acting elements and trans-acting factors for accurate translation of chloroplast psbA mRNAs: Development of an in vitro translation system from tobacco chloroplasts. EMBO J 15: 1687–1695

    PubMed  CAS  Google Scholar 

  • Hirose T and Sugiura M (1997) Both RNA editing and RNA cleavage are required for translation of tobacco chloroplast ndhD mRNA: A possible regulatory mechanism for the expression of a chloroplast operon consisting of functionally unrelated genes. EMBO J 16: 6804–6811

    Article  PubMed  CAS  Google Scholar 

  • Hirose T and Sugiura M (2001) Involvement of a site-specific transacting factor and a common RNA-binding protein in the editing of chloroplast mRNAs: Development of a chloroplastin vitro RNA editing system. EMBO J 20: 1144–1152

    Article  PubMed  CAS  Google Scholar 

  • Hirose T, Kusumegi T, Tsudzuki T and Sugiura M (1999) RNA editing sites in tobacco chloroplast transcripts: Editing as a possible regulator of chloroplast RNA polymerase activity. Mol Gen Genet 262: 462–467

    Article  PubMed  CAS  Google Scholar 

  • Hoch B, Maier RM, Appel K, Igloi GL and Kössel H (1991) Editing of a chloroplast mRNA by creation of an initiation codon. Nature 353: 178–180

    Article  PubMed  CAS  Google Scholar 

  • Hupfer H, Swiatek M, Hornung S, Herrmann RG, Maier RM, Chiu WL and Sears B (2000) Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable Euoenothera plastomes. Mol Gen Genet 263: 581–585

    PubMed  CAS  Google Scholar 

  • Ikeuchi M (1992a) Subunit proteins of Photosystem II. Bot Mag Tokyo 105: 327–373

    Google Scholar 

  • Ikeuchi M (1992b) Subunit proteins of Photosystem I. Plant Cell Physiol 33: 669–676

    CAS  Google Scholar 

  • Jahn D, Verkamp E and Söll D (1992) Glutamyl-transfer RNA: A precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17: 215–218

    Article  PubMed  CAS  Google Scholar 

  • Kapoor S and Sugiura M(1998) Expression and regulation of plastid genes. In: Raghavendra AS (ed) Photosynthesis: A Comprehensive Treatise, pp 72–86. Cambridge University Press, Cambridge,UK

    Google Scholar 

  • Kapoor S and Sugiura M (1999) Identification of two essential sequence elements in the nonconsensus type II PatpB-290 plastid promoter by using plastid transcription extracts from cultured tobacco BY-2 cells. Plant Cell 11: 1799–1810

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Kaneko T, Sato S, Nakamura Y and Tabata S (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7: 323–330

    Article  PubMed  CAS  Google Scholar 

  • Kofer W, Koop HU, Wanner G and Steinmuller K (1998) Mutagenesis of the genes encoding subunits A, C, H, I, J and K of the plastid NAD(P)H-plastoquinone-oxidoreductase in tobacco by polyethylene glycol-mediated plastome transformation. Mol Gen Genet 258: 166–173

    Article  PubMed  CAS  Google Scholar 

  • Konishi T, Shinohara K, Yamada K and Sasaki Y (1996) Acetyl-CoA carboxylase in higher plants: Most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol 37: 117–122

    PubMed  CAS  Google Scholar 

  • Kowallik KV (1997) Origin and evolution of chloroplasts: Current status and future perspectives. In: Schenk HFA, Herrmann RG, Jeon KW, Müller NE, Schwemmler W (eds) Eukaryotism and Symbiosis, pp 3–23. Springer-Verlag, Heiderberg

    Google Scholar 

  • Maier RM, Hoch B, Zeltz P and Kössel H. (1992) Internal editing of the maize chloroplast ndhA transcript restores codons for conserved amino acids. Plant Cell 4: 609–616

    Article  PubMed  CAS  Google Scholar 

  • Maier RM, Neckermann K, Igloi GL and Kössel H (1995) Complete sequence of the maize chloroplast genome: Gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251: 614–628

    Article  PubMed  CAS  Google Scholar 

  • Martin W and Herrmann RG (1998) Gene transfer from organelles to the nucleus: How much, what happens, and why? Plant Physiol 118: 9–17

    Article  PubMed  CAS  Google Scholar 

  • Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW, Calie PJ, Jermiin LS and Wolfe KH (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13: 645–658

    Article  PubMed  CAS  Google Scholar 

  • Ogihara Y, Isono K, Kojima T, Endo A, Hanaoka m, Shiina T, Terachi T, Utsugi S, Murata m, Mori N, Takumi S, Ikeo K, Gojobori T, Murai R, Murai K, Matsuoka Y, Ohnishi Y, Tajiri H and Tsunewaki K (2000) Chinese spring wheat (Triticum aestivum L.) chloroplast genome: Complete sequence and contig clones. Plant Mol Biol Rep 18: 243–253

    CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sanao T, Sano S, Umesone K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H and Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chlorolast DNA. Nature 322: 572–574

    Article  CAS  Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: Structure and evolution. In: Bogorad L and Vasil IK (eds) TheMolecular Biology of Plastids, pp 5–53. Academic Press, San Diego

    Google Scholar 

  • Pfitzinger H, Weil JH, Pillay DTN and Guillemaut P (1990) Codon recognition mechanism in plant chloroplasts. Plant Mol Biol 14: 805–814

    Article  PubMed  CAS  Google Scholar 

  • Race HL, Herrmann RG and Martin W(1999) Why have organelles retained genomes? Trends Genet 15: 364–370

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Kössel H and Bock R (1997) Targeted inactivation of a tobacco intron-containing open reading frame reveals a novel chloroplast-encoded Photosystem I-related gene.J Cell Biol 139: 95–102

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Biehler K and Bock R (2000) A small chloroplast-encoded protein as a novel architectural component of the light-harvesting antenna. J Cell Biol 149: 369–378

    Article  PubMed  CAS  Google Scholar 

  • Sager R and Ishida MR (1963) Chloroplast DNA in Chlamydomonas. Proc Natl Acad Sci USA 50: 725–730

    Article  PubMed  CAS  Google Scholar 

  • Sasaki Y, Kozaki A and Hatano m (1997) Link between light and fatty acid synthesis: Thioredoxin-linked reductive activation of plastidic acetyl-CoA carboxylase. Proc Natl Acad Sci USA 94: 11096–11101

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E and Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6: 283–290

    Article  PubMed  CAS  Google Scholar 

  • Sazanov LA, Burrows PA and Nixon PJ (1998)The plastid ndh genes code for an NADH-specific dehydrogenase: Isolation of a complex I analogue from pea thylakoid membranes. Proc Natl Acad Sci USA 95: 1319–1324

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG and Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea): Complete nucleotide sequence and gene organization. Plant Mol Biol 45: 307–315

    Article  PubMed  CAS  Google Scholar 

  • Shanklin J, DeWitt ND and Flanagan JM (1995) The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: An archetypal twocomponent ATP-dependent protease. Plant Cell 7: 1713–1722

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Endo T, Hashimoto T, Yamada Y, Asada K and Yokota A (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci USA 95: 9705–9709

    Article  PubMed  CAS  Google Scholar 

  • Shimada H, Whittier RF, Hiratsuka J, Maeda Y, Hirai A and Sugiura M (1989) A physical map and clone bank of the rice (Oryza sativa) chloroplast genome. Plant Mol Biol Rep 7: 284–291

    CAS  Google Scholar 

  • Shimada H, Fukuta M, Ishikawa M and Sugiura M (1990) Rice chloroplast RNA polymerase genes: the absence of an intron in rpoC1 and the presence of an extra sequence in rpoC2. Mol Gen Genet 221: 395–402

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chungwongse J, Obokata J, Yamaguchi-Shinozaki K, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H and Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049

    PubMed  CAS  Google Scholar 

  • Smooker PM, Kruft V and Subramanian AR (1990) A ribosomal protein is encoded in the chloroplast DNA in a lower plant but in the nucleus in angiosperms, Isolation of the spinach L21 protein and cDNA clone with transit and an unusual repeat sequence. J Biol Chem 265: 16699–16703

    PubMed  CAS  Google Scholar 

  • Stoebe B, Martin W and Kowallik KV (1998) Distribution and nomenclature of protein-coding genes in 12 sequenced chloroplast genomes. Plant Mol Biol Rep 16: 243–255

    Article  Google Scholar 

  • Sugita M, Svab Z, Maliga P and Sugiura M (1997) Targeted deletion of sprA from the tobacco plastid genome indicated that the encoded small RNA is not essential for pre-16S rRNA maturation in plastids. Mol Gen Genet 257: 23–27

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M (1989) The chloroplast chromosomes in land plants. Annu Rev Cell Biol 5: 51–70

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19: 149–168

    Article  PubMed  CAS  Google Scholar 

  • Sugiura M and Wakasugi T (1989) Compilation and comparison of transfer RNA genes from tobacco chloroplasts. Crit Rev Plant Sci 8: 89–101

    Article  CAS  Google Scholar 

  • Sugiura M, Hirose T and Sugita M(1998) Evolution and mechanism of translation in chloroplasts. Annu Rev Genet 32: 437–459

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JY, Bollivar DW and Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 31: 61–89

    Article  PubMed  CAS  Google Scholar 

  • Svab Z and Maliga P (1993) High frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90: 913–917

    Article  PubMed  CAS  Google Scholar 

  • Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, Cinque G, Müller B, Eichacker LA, Stern DB, Bassie R, Herrmann RG and Wollman F-A (2001) The chloroplast gene ycf9 encodes a Photosystem II (PS II) core subunit, PsbZ, that participates in PS II supramolecular architecture. Plant Cell 13: 1347–1367

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y (1998) Chloroplast-encoded small subunits of the three multiprotein complexes in photosynthetic electron transport. J Plant Res 111: 101–111

    CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815

    Article  Google Scholar 

  • Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T and Sugiura M (1992) Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: Nucleotide sequence of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. Mol Gen Genet 232: 206–214

    PubMed  CAS  Google Scholar 

  • Tsudzuki J, Ito S, Tsudzuki T, Wakasugi T and Sugiura M (1994)A new gene encoding tRNAPro(GGG) is present in the chloroplast genome of black pine: a compilation of 32 tRNA genes from black pine chloroplasts. Curr Genet 26: 153–158

    Article  PubMed  CAS  Google Scholar 

  • Tsudzuki T, Wakasugi T and Sugiura M (2001) Comparative analysis of RNA editing sites in higher plant chloroplasts.J Mol Evol 53: 327–332

    Article  PubMed  CAS  Google Scholar 

  • Vera A and Sugiura M (1994) A novel RNA gene in the tobacco plastid genome: its possible role in the maturation of 16S rRNA. EMBO J 13: 2211–2217

    PubMed  CAS  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T and Sugiura M (1994a) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91: 9794–9798

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Shibata M and Sugiura M (1994b) A physical map and clone bank of the black pine (Pinus thunbergii) chloroplast genome. Plant Mol Biol Rep 12: 227–241

    CAS  Google Scholar 

  • Wakasugi T, Hirose T, Horihata M, Tsudzuki T, Kössel H and Sugiura M (1996) Creation of a novel protein-coding region at the RNA level in black pine chloroplasts: The pattern of RNA editing in the gymnosperm chloroplast is different from that in angiosperms. Proc Natl Acad Sci USA 93: 8766–8770

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi T, Sugita M, Tsudzuki T and Sugiura M (1998) Updated gene map of tobacco chloroplast DNA. Plant Mol Biol Rep 16: 231–241

    Article  CAS  Google Scholar 

  • Wolfe KH, Morden CW and Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89: 10648–10652

    Article  PubMed  CAS  Google Scholar 

  • Xie Z and Merchant S (1996) The plastid-encoded ccsA gene is required for heme attachment to chloroplast c-type cytochromes. J Biol Chem 271: 4632–4639

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Iinuma H, Masuzawa T and Ueda K (1996) Extensive RNA editing of U- C in addition to C- U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucleic Acids Res 24: 1008–1014

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga K, Kakehi T, Shima Y, Iinuma H, Masuzawa T and Ueno M (1997) Extensive RNA editing and possible doublestranded structures determining editing sites in the atpB transcripts of hornwort chloroplasts. Nucleic Acids Res 25: 4830–4834

    Article  PubMed  CAS  Google Scholar 

  • Zaita N, Torazawa K, Shinozaki K and Sugiura M (1987) Trans splicing in vivo: joining of transcripts from the ‘divided’ gene for ribosomal protein S12 in the chloroplasts of tobacco. FEBS Lett 210: 153–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Sugiura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakasugi, T., Tsudzuki, T. & Sugiura, M. The genomics of land plant chloroplasts: Gene content and alteration of genomic information by RNA editing. Photosynthesis Research 70, 107–118 (2001). https://doi.org/10.1023/A:1013892009589

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013892009589

Navigation