Skip to main content
Log in

Effect of hydroxyapatite porosity on growth and differentiation of human osteoblast-like cells

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To study whether hydroxyapatite (HA) porosity can influence its osteoconductive properties, cell adhesion, proliferation and differentiation were compared in human osteoblast-like cells grown on HA disks of different porosity (A = 20%, B = 40%, C = 60%). Human osteoblast-like cells were isolated and characterized. Proliferation rate and alkaline phosphatase (ALP) activity were assessed at 3, 7, 15, 21, and 28 days. Type I collagen and osteonectin production were demonstrated with fluorescence microscopy and osteoblast adhesion studied at 7 and 21 days by scanning electron microscopic analysis. Cell growth on HA was three- to six-fold lower than on polystyrene control disks. At 28 days, 2141 (±350) cells/well grew on the most porous disks (Group C), with highly significant differences from controls (p < 0.005). The ALP production was 2–3 fold lower on HA than on plastic. In the Group C the mean ALP activity was of 2.95 (±0.07) UI/well after 28 days, higher than in the other two groups. At 21 and 28 days, proliferation rate and ALP activity on the three HA cultures were significantly different (p < 0.05). A decrease in cell population and increased ALP activity were observed on the most porous material, and high proliferation and poor differentiation rates on the less porous disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. HULBERT, R. S. YOUNG, R. S. MATHEWS, J. J. KLAWITTER, C. D. TALBERT and F. H. STELLING, J. Biomed. Mater. Res. 4 (1970) 433.

    Google Scholar 

  2. G. F. MUSCHLER, B. HUBER, T. ULLMAN, R. BARTH, K. EASLEY, J. O. OTIS and J. M. LANE,J. Orthop. Res. 11 (1993) 514.

    Google Scholar 

  3. E. M. YOUNGER and M. W. CHAPMAN,J. Orthop. Trauma 3 (1989) 192.

    Google Scholar 

  4. J. M. TOTH, H. S. AN, T. H. LIM, Y. RAN, N. G. WEISS, R. LUNDBERG, R. M. XU and L. LYNCH, Spine 20(20) (1995) 2203.

    Google Scholar 

  5. H. BURCHARDT, Orthop. Clin. North Am. 18 (1987) 187.

    Google Scholar 

  6. C. J. DAMIEN and J. R. PARSON, Journal of Applied Biomaterials 2 (1991) 187.

    Google Scholar 

  7. D. C. TANCRED, B. A. O. MCCORMACK and A. J. CARR, Biomaterials 19 (1998) 1735.

    Google Scholar 

  8. Idem., ibid. 19 (1998) 2303.

  9. K. D. JOHNSON, K. E. FRIESON, T. S. KELLER, C. COOK, R. SCHEINBERG, J. ZERWEKH, L. MEYERS and M. F. SCIALDINI, J. Orthop. Res. 14 (1996) 351.

    Google Scholar 

  10. R. G. T. GEESINK and N. H. M. HOEFNAGELS, J. Bone and Joint Surg. (Br) 77(4) (1995) 534.

    Google Scholar 

  11. K. SOBALLE and S. OVERGAARD, ibid. 78 (1996) 689.

    Google Scholar 

  12. K. KATO, H. AOKI, T. TABATA and M. OGISO, Biomed. Med. Devices Artif. Org. 7 (1979) 291.

    Google Scholar 

  13. M. JARCHO, Clin. Orthop. 157 (1981) 259.

    Google Scholar 

  14. R. G. COURTENEY-HARRIS, M. V. KAYSER and S. DOWNES, Biomaterials 16 (1995) 489.

    Google Scholar 

  15. D. A. PULEO, L. A. HOLLERAN, R. H. DOREMUS and R. BIZIOS, J. Biomed. Mater. Res. 25 (1991) 711.

    Google Scholar 

  16. D. A. PULEO and R. BIZIOS, ibid. 26 (1992) 291.

    Google Scholar 

  17. W. C. A. VROUWENVELDER, C. G. GROOT and K. DE GROOT, ibid. 27 (1993) 465.

    Google Scholar 

  18. R. O. C. OREFFO, F. C. M. DRIESSENS, J. A. PLANELL and J. T. TRIFFITT, Biomaterials 19 (1998) 1845.

    Google Scholar 

  19. M. R. URIST, in “Fundamental and Clinical Bone Physiology” (J. B. Lippincott, Philadelphia, 1980) p. 361.

    Google Scholar 

  20. R. G. BURWELL, in “Bone Grafts, Derivatives and Substitutes” (Butterworth-Heinemann, Oxford, 1994) p. 3.

    Google Scholar 

  21. A. TOESCA, A. PAGNOTTA and N. SPECCHIA, Cell. Biol. Int. 24(5) (2000) 303.

    Google Scholar 

  22. P. J. MARIE, A. LOMRI, A. SABBAGH and M. BASLE, In vitro Cell Develop. Biol. 25 (1989) 373.

    Google Scholar 

  23. H. BEN-BASSAT, B. Y. KLEIN, E. LERNER, R. AZOURY, E. RAHAMIM, Z. SHLOMAI and S. SARING, Cell. Mater. 4 (1994) 37.

    Google Scholar 

  24. R. T. BALLOCK and A. B. ROBERTS, in “Growth Factors: A Practical Approach” (I. McKay and I. Lengh, Oxford, 1993) p. 95.

    Google Scholar 

  25. A. TOESCA, A. PAGNOTTA and N. SPECCHIA, Ital. J. Anat. Embriol. in press.

  26. M. HOTT, B. NOEL, D. BERNACHE-ASSOLANT, C. REY and P. J. MARIE, J. Biomed. Mater. Res. 37 (1997) 508.

    Google Scholar 

  27. J. S. SUN, H. C. LIU, W. H. S. CHANG, J. LI, F. H. LIN and H. C. TAI, ibid. 39 (1998) 390. 583

    Google Scholar 

  28. E. J. EVANS, Biomaterials 12 (1991) 574.

    Google Scholar 

  29. Idem., ibid. 15 (1994) 713.

  30. G. ZAMBONIN, M. GRANO, G. GRECO, R. O. C. OREFFO and J. T. TRIFFIT, Acta Orthop. Scand. 70(2) (1999) 217.

    Google Scholar 

  31. E. TSURUGA, H. TAKITA, H. ITOH, Y. WAKISAKA and Y. KUBOKI, J. Biochem. 121 (1997) 317.

    Google Scholar 

  32. S. OZAWA and S. KASUGAI, Biomaterials 17 (1996) 23.

    Google Scholar 

  33. J. E. DAVIES, B. CAUSTON, Y. BOVELL, K. DAVY and C. S. STURT, ibid. 7 (1986) 231.

    Google Scholar 

  34. F. B. BAGAMBISA and U. JOOS, ibid. 11 (1990) 50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Specchia, N., Pagnotta, A., Cappella, M. et al. Effect of hydroxyapatite porosity on growth and differentiation of human osteoblast-like cells. Journal of Materials Science 37, 577–584 (2002). https://doi.org/10.1023/A:1013725809480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013725809480

Keywords

Navigation