Skip to main content
Log in

Physical Determinants of Methane Oxidation Capacity in a Temperate Soil

  • Published:
Water, Air and Soil Pollution: Focus

Abstract

Methane oxidation capacity of soil from an experimentalsite in Northwest England was strongly dependent on temperatureand percentage water holding capacity. The soil had a distincttemperature optimum of 25 °C, with capacity for net methaneoxidation being completely lost below 5 and greater than37 °C. Optimum percentage water holding capacity for methaneoxidation was in the range 30–60%, with significant reductions inmethane oxidation rates in soils outside this range. Organic andmineral layers within the soil showed differences in potentialmethane oxidation rate, with methane oxidation being most rapid inthe buried organic layer and least rapid in the surface organiclayer. The importance of soil structure and gas diffusionlimitation is underlined, as is the strong temperature dependenceof methane oxidation when such diffusion limitation is removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamsen, A. P. S. and King, G. M.: 1993, ‘Methane consumption in temperature and subarctic forest soils: Rates, vertical zonation, and responses to water and nitrogen’, Appl. Environ. Microbiol. 59, 485–490.

    Google Scholar 

  • Amaral, J. A., Ren, T. and Knowles, R.: 1998, ‘Atmospheric methane consumption by forest soils and extracted bacteria at different pH values’, Appl. Environ. Microbiol. 64, 2397–2402.

    PubMed  Google Scholar 

  • Bender, M. and Conrad, R.: 1992, ‘Kinetics of CH4 oxidation in oxic soils exposed to ambient air or high CH4 mixing ratios’, FEMS Microb. Ecol. 101, 261–270.

    Google Scholar 

  • Blake, D. R. and Rowland, F. S.: 1988, ‘Continuing worldwide increase in tropospheric methane. 1978 to 1987’, Science 31, 1129–1131.

    Google Scholar 

  • Brown, A. H. F.: 1992, The Ecology of Mixed-Species Stands of Trees, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Brown, A. H. F. and Iles, M. A.: 1991, ‘Water chemistry profiles under four tree species at Gisburn, NW England’, Forestry 64(2), 169–184

    Google Scholar 

  • Brumme, R. and Borken, W.: 1999, ‘Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem’, Global Biogeochem. Cycles 13, 493–501.

    Google Scholar 

  • Bubier, J. L., Moore, T. R., Bellisario, L. and Comer, N. T.: 1995, ‘Ecological controls on methane emissions from a northern peatland complex in the zone of discontinuous permafrost, Manitoba, Canada’, Global Biogeochem. Cycles 9, 455–470.

    Google Scholar 

  • Castro, M. S., Steudler, P. A., Melillo, J. M., Aber, J. D. and Bowden, R. D.: 1995, ‘Factors controlling atmospheric methane consumption by temperate forest soils’, Global Biogeochem. Cycles 9, 1–10.

    Google Scholar 

  • Cicerone, R. J. and Oremland, R. S.: 1988, ‘Biogeochemical aspects of atmospheric methane’, Global Biogeochem. Cycles 2, 299–327.

    Google Scholar 

  • Dunfield, P., Knowles, R., Dumont, R. and Moore, T. R.: 1993, ‘Methane production and consumption in temperate and sub-arctic peat soils — Response to temperature and pH’, Soil Biol. Biochem. 25, 321–326.

    Google Scholar 

  • Gulledge, J. and Schimel, J. P.: 1998, ‘Low-concentration kinetics of atmospheric CH4 oxidation in soil and mechanism of NH +4 inhibition’, Appl. Environ. Microbiol. 1998, 4291–4298.

    Google Scholar 

  • Hutsch, B. W., Webster, C. and Powlson, D. S.: 1994, ‘Methane oxidation in soil as affected by land use, soil pH and N fertilization’, Soil Biol. Biochem. 26, 1613–1622.

    Google Scholar 

  • Kightley, D., Nedwell, D. B. and Cooper, M.: 1995, ‘Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms’, Appl. Environ. Microbiol. 61(2), 592–601.

    Google Scholar 

  • King, G. M. and Adamsen, P. S.: 1992, ‘Effects of temperature on methane consumption in a forest soil and in pure cultures of the methanotroph Methylomonas rubra’, Appl. Environ. Microbiol. 58, 2758–2763.

    Google Scholar 

  • King, G. M. and Schnell, S.: 1994, ‘Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption’, Nature 370, 282–284.

    Google Scholar 

  • Moore, T. R. and Knowles, R.: 1989, ‘The influence of water table on methane and carbon dioxide emissions from peatland soils’, Can. J. Soil Sci. 69, 33–38.

    Google Scholar 

  • Moosavi, S. C., Crill, P. M., Pullman, E. R., Funk, D. W. and Peterson, K. M.: 1996, ‘Controls of CH4 flux from and Alaskan boreal wetland’, Global Biogeochem. Cycles 10, 287–296.

    Google Scholar 

  • Mosier, A., Schimel, D., Valentine, D., Bronson, K. and Parton, W.: 1991, ‘Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands’, Nature 350, 330–332.

    Article  Google Scholar 

  • Nesbit, S. P. and Breitenbeck, G. A.: 1992, ‘A laboratory study of factors influencing methane uptake in soils’, Agric. Ecosystems Environ. 41, 39–54.

    Article  Google Scholar 

  • Pearman, G. I. and Fraser, P. J.: 1988, ‘Sources of increased methane’, Nature 332, 489–490.

    Google Scholar 

  • Robertson, S. M. C., Hornung, M. and Kennedy, V. H.: 2000, ‘Water chemistry of throughfall and soil water under four tree species at Gisburn, Northwest England, before and after felling’, Forest Ecol. Manage. 129, 101–117.

    Google Scholar 

  • Smith, K. A., Dobbie, K. E., Ball, B. C., Bakken, L. R., Sitaula, B. K., Hansen, S., Brumme, R., Borken, W., Christensen, S., Prieme, A., Fowler, D., Macdonald, J. A., Skiba, U., Klemedtsson, L., Kasimir-Klemedtsson, A., Degorska, A. and Orlanski, P.: 2000, ‘Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink’, Global Change Biol. 6, 791–803.

    Google Scholar 

  • Steudler, P. A., Bowden, R. D., Melillo, J. M. and Aber, J. D.: 1989, ‘Influence of nitrogen fertilization on methane uptake in temperate forest soils,’ Nature 341, 314–316.

    Article  Google Scholar 

  • Torn, S. M. and Chapin, F. S.: 1993, ‘Environmental and biotic controls over methane flux from Arctic tundra’, Chemosphere 26, 357–368.

    Google Scholar 

  • Whalen, S. C. and Reeburgh, W. S.: 1990, ‘Consumption of atmospheric methane by tundra soils’, Nature 346, 160–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reay, D.S., Nedwell, D.B. & McNamara, N. Physical Determinants of Methane Oxidation Capacity in a Temperate Soil. Water, Air, & Soil Pollution: Focus 1, 401–414 (2001). https://doi.org/10.1023/A:1013121010356

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013121010356

Navigation