Skip to main content
Log in

Extension of Subgradient Techniques for Nonsmooth Optimization in Banach Spaces

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

In this paper we continue the study of the subgradient method for nonsmooth convex constrained minimization problems in a uniformly convex and uniformly smooth Banach space. We consider the case when the stepsizes satisfy ∑ k=1 α k =∞, lim  k→∞α k =0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, Ya. I.: Metric and generalized projection operators in Banach spaces: Properties and applications, In: A. Kartsatos (ed.), Theory and Applications of Nonlinear Operators of Monotone and Accretive Type, Marcel Dekker, New York, 1996, pp. 15-50.

    Google Scholar 

  2. Alber, Ya. I.: The problem of the minimization of smooth functionals by gradient methods, USSR Comput. Math. Math. Phys. 11 (1971), 263-272.

    Google Scholar 

  3. Alber, Ya. I.: Minimization of functionals of class C 1,μ on bounded sets, Econom. Mat. Met. 16 (1980), 185-190.

    Google Scholar 

  4. Alber, Ya. I.: Recurrence relations and variational inequalities, Soviet Mat. Doklady 27 (1983), 511-517.

    Google Scholar 

  5. Alber, Ya. I.: On average convergence of the iterative projection methods (to be published).

  6. Alber, Ya. I., Iusem, A. N. and Solodov, M. V.: On the projection subgradient method for nonsmooth convex optimization in a Hilbert space, Math. Programming 81 (1998), 23-35.

    Google Scholar 

  7. Alber, Ya. I., Iusem, A. N. and Solodov, M. V.: Minimization of nonsmooth convex functionals in Banach spaces, J. Convex Anal. 4 (1997), 235-254.

    Google Scholar 

  8. Alber, Ya. I. and Reich, S.: An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J. 4 (1994), 39-54.

    Google Scholar 

  9. Clarke, F. H.: Optimization and Nonsmooth Analysis, SIAM Publications, Philadelphia, 1983.

    Google Scholar 

  10. Correa, R. and Lemaréchal, L.: Convergence of some algorithms for convex minimization, Math. Programming 62 (1993), 261-275.

    Google Scholar 

  11. Diestel, J.: The Geometry of Banach Spaces, Lecture Notes in Math. 485, Springer, Berlin, 1975.

    Google Scholar 

  12. Dunn, J. C.: Global and asymptotic convergence rates estimates for a class of projected gradient processes, SIAM J. Control Optim. 19 (1981), 368-400.

    Google Scholar 

  13. Ermoliev, Yu.: Methods for solving nonlinear extremal problems, Cybernetics 2 (1966), 1-17.

    Google Scholar 

  14. Figiel, T.: On the moduli of convexity and smoothness, Studia Math. 56 (1976), 121-155.

    Google Scholar 

  15. Golshtein, E. and Tretyakov, N.: Modified Lagrange Functions, Moscow, 1989.

  16. Knopp, K.: Theory and Applications of Infinite Series, Dover, New York, 1990.

    Google Scholar 

  17. Lindenstrauss, J. and Tzafriry, L.: Classical Banach Spaces II, Springer, Berlin, 1979.

    Google Scholar 

  18. Polyak, B. T.: A general method of solving extremum problems, Soviet Mat. Doklady 8 (1967), 593-597.

    Google Scholar 

  19. Serb, I.: Estimates for the modulus of smoothness and convexity of a Banach space, Mathematica 34 (1992), 61-70.

    Google Scholar 

  20. Vasil'ev, F. P.: Methods of Solving Extremal Problems, Nauka, Moscow, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alber, Y.I., Iusem, A.N. Extension of Subgradient Techniques for Nonsmooth Optimization in Banach Spaces. Set-Valued Analysis 9, 315–335 (2001). https://doi.org/10.1023/A:1012665832688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012665832688

Navigation