Skip to main content
Log in

Transglycosylation reactions by exoglycosidases from the termite Macrotermes subhyalinus

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The ability of four exoglycosidases (β-galactosidase, β-glucosidase, α-glucosidase and invertase) from the termite Macrotermes subhyalinus to catalyse tranglycosylation reactions was tested using lactose, cellobiose, maltose and sucrose as glycosyl donors and 2-phenylethanol as glycosyl acceptor. The experimental conditions were optimized in relation to the time course of the reaction, pH and concentrations of glycosyl donor and acceptor. Whereas the hydrolytic activity was largely predominant over the transferase activity with β-galactosidase and β-glucosidase, the transglycosylation activity represented 68% with α-glucosidase. In addition, as demonstrated by the transglycosylation product formed, the hydrolysis of sucrose was catalysed by α-glucosidase and not by invertase. On the basis of this work, α-glucosidase from M. subhyalinus appears to be a valuable tool for the preparation of neoglycoconjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker KC,Kuhl P (1999) Synthesis of O-β-galactopyranosyl-L-serine derivatives using β-galactosidase in aqueous-organic reaction systems J. Carbohydr. Chem. 18: 121-129.

    Google Scholar 

  • Chang ST,Parker KN,Bauer MW,Kelly RM (2001) β-Glucosidase from Pyrococcus furiosus. Meth. Enzymol. 330: 260-269.

    Google Scholar 

  • Cote GL,Tao BY (1990) Oligosaccharide synthesis by enzymatic transglycosylation. Glycoconjugate J. 7: 145-162.

    Google Scholar 

  • Crout DHG,Vic G (1998) Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr. Opin. Chem. Biol. 2: 98-111.

    Google Scholar 

  • Dion M,Fourage L,Hallet JN,Colas B (1999) Cloning and expression of a β-glycosidase gene from Thermus thermophilus. Sequence and biochemical characterization of the encoded enzyme. Glycoconjugate J. 16: 27-37.

    Google Scholar 

  • Finch P,Yoon JH (1997) The effects of organic solvents on the synthesis of galactose disaccharides using β-galactosidases. Carbohydr. Res. 303: 339-345.

    Google Scholar 

  • Fortun Y,Colas B (1991) Lithium chloride effect on phenylethyl-β-D-galactoside synthesis by Aspergillus oryzae β-D-galactosidase in the presence of high lactose concentration. Biotechnol. Lett. 13: 863-866.

    Google Scholar 

  • Fourage L,Helbert M,Nicolet P,Colas B (1999) Temperature dependence of the ultraviolet-visible spectra of ionized and un-ionized forms of nitrophenol: consequence for the determination of enzymatic activities using nitrophenyl derivatives-A warning. Anal. Biochem. 270: 184-185.

    Google Scholar 

  • Gijsen HJM,Qiao L,Fitz W,Wong CH (1996) Recent advances in the chemoenzymatic synthesis of carbohydrates and carbohydrate mimetics. Chem. Rev. 96: 443-473.

    Google Scholar 

  • Hoefsloot LH,Hoogeveen-Westerveld M,Kroos MA,van Beeumen J,Reuser AJJ,Oostra BA (1988) Primary structure and processing of lysosomal β-glucosidase; homology with the intestinal sucrase-isomaltase complex. EMBO J. 7: 1697-1704.

    Google Scholar 

  • Ichikawa Y,Look GC,Wong CH (1992) Enzyme-catalyzed oligosaccharide synthesis. Anal. Biochem. 202: 215-238.

    Google Scholar 

  • Kunst A,Draeger B,Ziegenhorn J (1984) Colorimetric methods with glucose oxidase and peroxidase. In: Bergmeyer HU, ed. Methods of Enzymatic Analysis, Vol. 6. Weinheim: Verlag Chemie, pp. 178-185.

    Google Scholar 

  • Leparoux S,Fortun Y,Colas B (1994) Synthesis of β-galactosyl-(hydroxy amino acid) derivatives using β-galactosidase activity of Achatina achatina digestive juice. Biotechnol. Lett. 16: 677-682.

    Google Scholar 

  • Leparoux S,Padrines M,Fortun Y,Colas B (1996) O-glycosylation of dipeptides using β-galactosidase activity of Achatina achatina digestive juice. Biotechnol. Lett. 18: 135-138.

    Google Scholar 

  • Leparoux S,Padrines M,Placier G,Colas B (1997) Characterization of a strictly specific acid β-galactosidase from Achatina achatina. Biochim. Biophys. Acta 1336: 522-532.

    Google Scholar 

  • Matoub M (1993) La symbiose termite-champignon chez Macrotermes bellicosus (Termitidae Macrotermitinae) Rôle des enzymes acquises dans la xylanolyse. Thesis, University Paris XII, Valde-Marne.

    Google Scholar 

  • Nakao M,Nakayama T,Harada M,Kakudo A,Ikemoto H,Kobayashi S,Shibano Y (1994) Purification and characterization of a Bacillus sp. SAM1606 thermostable β-glucosidase with transglucosylation activity. Appl. Microbiol. Biotechnol. 44: 337-343.

    Google Scholar 

  • Nilsson KGI (1988) Enzymatic synthesis of oligosaccharides. Trends Biotechnol. 6: 256-264.

    Google Scholar 

  • Rouland C (1986) Contribution à l'étude des osidases digestives de plusieurs espèces de termites africains. Purification et caractérisation des cellulases et xylanases de Macrotermes mülleri (Termitidae, Macrotermitinae et de son champignon symbiotique. Thesis, University Paris Val-de-Marne.

    Google Scholar 

  • Rouland C,Brauman A,Keleke S,Labat M,Mora P,Renoux J (1990) Endosymbiosis and exosymbiosis in the fungus-growing termites. In: Lesel R, ed. Microbiology in Poecilotherms. Amsterdam: Elsevier Science, pp. 79-82.

    Google Scholar 

  • Singh S,Scigelova M,Vic G,Crout DHG (1996) Glycosidasecatalysed oligosaccharide synthesis of di-, tri-and tetrasaccharides using the N-acetylhexosaminidase from Aspergillus oryzae and the β-galactosidase from Bacillus circulans. J. Chem. Soc. Perkin Trans I: 1921-1926.

    Google Scholar 

  • Toone EJ,Simon ES,Bednarski MD,Whitesides GM (1989) Enzyme-catalyzed synthesis of carbohydrates. Tetrahedron 45: 5365-5422.

    Google Scholar 

  • Veivers PC,Mühlemann R,Slaytor M,Leuthold RH,Bignell DE (1991) Digestion, diet and polyethism in two fungus-growing termites: Macrotermes subhyalinus Rambur and M. michaelseni Sjøstedt. J. Insect. Physiol. 37: 675-682.

    Google Scholar 

  • Vetere A,Galateo C,Paoletti S (1997) All-aqueous, regiospecific transglycosylation synthesis of 3-O-β-L-fucopyranosyl-2-acetamido-2-deoxy-D-glucopyran ose, a building block for the synthesis of branched oligosaccharides. Biochem. Biophys. Res. Commun. 234: 358-361.

    Google Scholar 

  • Vulfson EN,Patel R,Beecher JE,Andrews AT,Law BA (1990) Glycosidases in organic solvents: I. Alkyl-β-glucoside synthesis in a water-organic two-phase system. Enzyme Microbiol. Tech. 12: 950-954.

    Google Scholar 

  • Wong CH,Halcomb RL,Ichikawa Y,Kajimoto T (1995) Enzymes in organic synthesis: application to the problems of carbohydrate recognition (part 2). Angew. Chem. Int. Ed. Engl. 34: 521-546.

    Google Scholar 

  • Yamamoto I,Muto N,Nagata E,Nakamura T,Suzuki Y (1990) Formation of a stable L-ascorbic acid β-glucoside by mammalian β-glucosidase-catalyzed transglucosylation. Biochim. Biophys. Acta 1035: 44-50.

    Google Scholar 

  • Yoon JH,Ajisaka K (1996) The synthesis of galactopyranosyl derivatives with β-galactosidases of different origins. Carbohydr. Res. 292: 153-163.

    Google Scholar 

  • Zeng X,Yoshino R,Murata T,Ajisaka K,Usui T (2000) Regioselective synthesis of p-nitrophenyl glycosides of β-Dgalactopyranosyl-disaccharides by transglycosylation with β-Dgalactosidases. Carbohydr. Res. 325: 120-131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouamé, L.P., Niamké, S., Diopoh, J. et al. Transglycosylation reactions by exoglycosidases from the termite Macrotermes subhyalinus. Biotechnology Letters 23, 1575–1581 (2001). https://doi.org/10.1023/A:1011969310742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011969310742

Navigation