Skip to main content
Log in

Operating charts for continuous sedimentation I: Control of steady states

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The industrial process of continuous sedimentation of solid particles in a liquid takes place in a clarifier-thickener unit, which is a large tank with a feed inlet somewhere in the middle and outlets at the top and bottom. For half a century the constitutive assumption by Kynch has provided a platform from which steady-state mass-balance considerations have been used to obtain rules and graphical tools for prediction of steady-state situations, design and control. This is often referred to as the `solids-flux theory' containing such key words as the `operating line', `state point' and `limiting flux'. The basic assumptions of the solids-flux theory yield a nonlinear partial differential equation that models the entire process. Since unique physically relevant solutions can now be obtained, the knowledge of these is used to establish and extend the solids-flux theory. Detailed information on all steady-state solutions and the control of these by adjusting a volume flow is presented by means of operating charts. Most of these are concentration-flux diagrams with information on, for example, how to perform a control action to fulfil a certain control objective formulated in terms of the output variables in steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Coe and G. H. Clevenger, Methods for determining the capacities of slime-settling tanks. Trans. AIME 55 (1916) 356–384.

    Google Scholar 

  2. P. A. Vesilind, Theoretical considerations: Design of prototype thickeners. Water and Sewage Works 115 (1968) 302–307.

    Google Scholar 

  3. F. Concha and A. Barrientos, A critical review of thickener design methods. KONA 11 (1993) 79–104.

    Google Scholar 

  4. G. J. Kynch, A theory of sedimentation. Trans. Faraday Soc. 48 (1952) 166–176.

    Google Scholar 

  5. P. T. Shannon, E. Stroupe and E. M. Tory, Batch and continuous thickening. Ind. Eng. Chem. Fundam. 2 (1963) 203–211.

    Google Scholar 

  6. K. E. Davis, W. B. Russel and W. J. Glantschnig, Settling suspensions of colloidal silica: Observations and X-ray measurements. J. Chem. Soc. Faraday Trans. 87 (1991) 411–424.

    Google Scholar 

  7. D. Chang, T. Lee, Y. Jang, M. Kim and S. Lee, Non-colloidal sedimentation compared with Kynch theory. Powder Technol 92 (1997) 81–87.

    Google Scholar 

  8. N. Yoshioka, Y. Hotta, S. Tanaka, S. Naito and S. Tsugami, Continuous thickening of homogeneous flocculated slurries. Kagagi Kogaku (Chem. Eng. Tokyo) 21 (1957) 66–74.

    Google Scholar 

  9. Å. Jernqvist, Experimental and theoretical studies of thickeners. Part 1. Derivation of basic equations and basic graphical constructions. Svensk Papperstidning 68 (1965) 506–511.

    Google Scholar 

  10. Å. Jernqvist, Experimental and theoretical studies of thickeners. Part 2. Graphical calculation of thickener capacity. Svensk Papperstidning 68 (1965) 545–548.

    Google Scholar 

  11. Å. Jernqvist, Experimental and theoretical studies of thickeners. Part 3. Concentration distribution of the steady and unsteady stat operation of thickeners. Svensk Papperstidning 68 (1965) 578–582.

    Google Scholar 

  12. N. J. Hasset, Concentrations in a continuous thickener. Ind. Chem. 40 (1964) 29–33.

    Google Scholar 

  13. R. I. Dick, Role of activated sludge final settling tanks. J. San. Eng. Div. 63(SA2) (1970) 423–436.

    Google Scholar 

  14. W. H. McHarg, Designing the optimum system for biological waste-treatment. Chem. Eng. 80 (1973) 46–49.

    Google Scholar 

  15. Å. Jernqvist, Experimental and theoretical studies of thickeners. Part 4. Experimental results. Svensk Papperstidning 69 (1966) 395–398.

    Google Scholar 

  16. P. T. Shannon and E. M. Tory, The analysis of continuous thickening. SME Trans. 235 (1966) 375–382.

    Google Scholar 

  17. P. A. Vesilind, Treatment and Disposal of Wastewater Sludges. Ann Arbor Science Pub., Inc., Ann Arbor,Michigan, USA (1974) 236 pp.

    Google Scholar 

  18. L. G. Eklund and Å. Jernqvist, Experimental study of the dynamics of a vertical continuous thickener–I. Chem. Eng. Sci. 30 (1975) 597–605.

    Google Scholar 

  19. R. I. Dick, Folklore in the design of final settling tanks. J. Water Pollut. Control Fed. 48 (1976) 633–644.

    Google Scholar 

  20. T. M. Keinath, M. Ryckman, C. Dana and D. Hofer, Activated sludge – unified system design and operation. J. Envir. Eng. Div. ASCE 103(EE5) (1977) 829–849.

    Google Scholar 

  21. V. D. Laquidara and T. M. Keinath, Mechanism of clarification failure. J. Water Pollut. Control Fed. 55 (1983) 54–57.

    Google Scholar 

  22. T. M. Keinath, Operational dynamics and control of secondary clarifiers. J. Water Pollut. Control Fed. 57 (1985) 770–776.

    Google Scholar 

  23. O. Lev, E. Rubin and M. Sheintuch, Steady state analysis of a continuous clarifier-thickener system. AIChE J. 32 (1986) 1516–1525.

    Google Scholar 

  24. M. Smollen and G. A. Ekama, Comparison of empirical settling-velocity equations in flux theory for secondary settling tanks. Water SA 10 (1984) 175–183.

    Google Scholar 

  25. G. A. Ekama and G. V. R. Marais, Sludge settlability and secondary settling tank design procedures. Water Pollut. Control 85 (1986) 101–113.

    Google Scholar 

  26. M. Sheintuch, Steady state modelling of reactor-settler interaction. Water Res. 21 (1987) 1463–1472.

    Google Scholar 

  27. J. B. Christian, Improve clarifier and thickener design and operation. Chem. Eng. Prog. 90 (1994) 50–56.

    Google Scholar 

  28. P. Balslev, C. Nickelsen and A. Lynggaard-Jensen, On-line flux-theory based control of secondary clarifiers. Water Sci. Tech. 30 (1994) 209–218.

    Google Scholar 

  29. A. E. Ozinsky, G. A. Ekama and B. D. Reddy, Mathematical simulation of dynamic behaviour of secondary settling tanks. Technical Report W85, Dept of Civil Engineering, University of Cape Town (1994).

    Google Scholar 

  30. A. E. Ozinsky and G. A. Ekama, Secondary settling tank modeling and design part 1: Review of theoretical and practical developments. Water SA 21 (1995) 325–332.

    Google Scholar 

  31. T. Matko, N. Fawcett, A. Sharpe and T. Stephenson, Recent progress in the numerical modelling of wastewater sedimentation tanks. Trans. I. Chem. E. 74(B) (1996) 245–258.

    Google Scholar 

  32. P. D. Lax, Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10 (1957) 537–566.

    Google Scholar 

  33. O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation. Uspekhi Mat. Nauk 14 (1959) 165–170, Amer. Math. Soc. Trans. Ser. 2, 33 (1964) 285–290.

    Google Scholar 

  34. C. A. Petty, Continuous sedimentation of a suspension with a nonconvex flux law. Chem. Eng. Sci. 30 (1975) 1451–1458.

    Google Scholar 

  35. H. K. Rhee, R. Aris and N. Amundson, First-Order Partial Differential Equations Volume 1. Englewood Cliffs: Prentice Hall, (1986) 543 pp.

    Google Scholar 

  36. M. C. Bustos and F. Concha, On the construction of global weak solutions in the Kynch theory of sedimentation. Math. Methods Appl. Sci. 10 (1988) 245–264.

    Google Scholar 

  37. M. C. Bustos, F. Concha and W. Wendland, Global weak solutions to the problem of continuous sedimentation of an ideal suspension. Math. Methods Appl. Sci. 13 (1990) 1–22.

    Google Scholar 

  38. M. C. Bustos, F. Paiva and W. Wendland, Control of continuous sedimentation as an initial and boundary value problem. Math. Methods Appl. Sci. 12 (1990) 533–548.

    Google Scholar 

  39. S. Diehl, G. Sparr and G. Olsson, Analytical and numerical description of the settling process in the activated sludge operation. In R. Briggs, editor, Instrumentation, Control and Automation of Water and Wastewater Treatment and Transport Systems, pages 471–478. IAWPRC, Pergamon Press (1990).

  40. J.-Ph. Chancelier, M. Cohen de Lara and F. Pacard, Analysis of a conservation PDE with discontinuous flux: A model of settler. SIAM J. Appl. Math. 54 (1994) 954–995.

    Google Scholar 

  41. S. Diehl, On scalar conservation laws with point source and discontinuous flux funtion. SIAM J. Math. Anal. 26 (1995) 1425–1451.

    Google Scholar 

  42. S. Diehl, A conservation law with point source and discontinuous flux funtion modelling continuous sedimentation. SIAM J. Appl. Math. 56 (1996) 388–419.

    Google Scholar 

  43. J.-Ph. Chancelier, M. Cohen de Lara, C. Joannis and F. Pacard, New insight in dynamic modelling of a secondary settler – I. Flux theory and steady-states analysis. Water Res. 31 (1997) 1847–1856.

    Google Scholar 

  44. S. Diehl, On boundary conditions and solutions for ideal clarifier-thickener units. Chem. Eng. J. 80 (2000) 119–133.

    Google Scholar 

  45. S. Diehl, Scalar conservation laws with discontinuous flux funtion: I. The viscous profile condition. Comm. Math. Phys. 176 (1996) 23–44.

    Google Scholar 

  46. S. Diehl and N.-O. Wallin, Scalar conservation laws with discontinuous flux function: II. On the stability of the viscous profiles. Comm. Math. Phys. 176 (1996) 45–71.

    Google Scholar 

  47. S. Diehl, Dynamic and steady-state behaviour of continuous sedimentation. SIAM J. Appl. Math. 57 (1997) 991–1018.

    Google Scholar 

  48. R. Bürger and F. Concha, Mathematical model and numerical simulation of the settling of flocculated suspensions. Int. J. Multiphase Flow 24 (1998) 1005–1023.

    Google Scholar 

  49. R. Bürger, W. L. Wendland and F. Concha, Model equations for gravitational sedimentation-consolidation processes. Z. Angew. Math. Mech. 80 (2000) 79–92.

    Google Scholar 

  50. M. C. Bustos, F. Concha, R. Bürger and E. M. Tory, Sedimentation and Thickening: Phenomenlogical Foundation and Mathematical Theory. Dordrecht: Kluwer Academic Publishers (1999) 285 pp.

    Google Scholar 

  51. S. Diehl, Operating charts for continuous sedimentation II: Step responses and dynamic control. In preparation (2001).

  52. F. M. Auzerais, R. Jackson, W. B. Russel and W. F. Murphy, The transient settling of stable and flocculated dispersions. J. Fluid Mech. 221 (1990) 613–639.

    Google Scholar 

  53. P. A. Vesilind and G. N. Jones, A reexamination of the batch-thickening curve. Res. J. Water Pollut. Control Fed. 62 (1990) 887–893.

    Google Scholar 

  54. R. Bürger and E. M. Tory, On upper rarefaction waves in batch settling. Powder Technol. 108 (2000) 74–87.

    Google Scholar 

  55. S. Diehl and U. Jeppsson, A model of the settler coupled to the biological reactor. Water Res. 32 (1998) 331–342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diehl, S. Operating charts for continuous sedimentation I: Control of steady states. Journal of Engineering Mathematics 41, 117–144 (2001). https://doi.org/10.1023/A:1011959425670

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011959425670

Navigation