Skip to main content
Log in

Geophysical Constraints on the Evolution of Mars

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The evolution of Mars is discussed using results from the recent Mars Global Surveyor (MGS) and Mars Pathfinder missions together with results from mantle convection and thermal history models and the chemistry of Martian meteorites. The new MGS topography and gravity data and the data on the rotation of Mars from Mars Pathfinder constrain models of the present interior structure and allow estimates of present crust thickness and thickness variations. The data also allow estimates of lithosphere thickness variation and heat flow assuming that the base of the lithosphere is an isotherm. Although the interpretation is not unambiguous, it can be concluded that Mars has a substantial crust. It may be about 50 km thick on average with thickness variations of another ±50 km. Alternatively, the crust may be substantially thicker with smaller thickness variations. The former estimate of crust thickness can be shown to be in agreement with estimates of volcanic production rates from geologic mapping using data from the camera on MGS and previous missions. According to these estimates most of the crust was produced in the Noachian, roughly the first Gyr of evolution. A substantial part of the lava generated during this time apparently poured onto the surface to produce the Tharsis bulge, the largest tectonic unit in the solar system and the major volcanic center of Mars. Models of crust growth that couple crust growth to mantle convection and thermal evolution are consistent with an early 1 Gyr long phase of vigorous volcanic activity. The simplest explanation for the remnant magnetization of crustal units of mostly the southern hemisphere calls for an active dynamo in the Noachian, again consistent with thermal history calculations that predict the core to become stably stratified after some hundred Myr of convective cooling and dynamo action. The isotope record of the Martian meteorites suggest that the core formed early and rapidly within a few tens of Myr. These data also suggest that the silicate rock component of the planet was partially molten during that time. The isotope data suggest that heterogeneity resulted from core formation and early differentiation and persisted to the recent past. This is often taken as evidence against vigorous mantle convection and early plate tectonics on Mars although the latter assumption can most easily explain the early magnetic field. The physics of mantle convection suggests that there may be a few hundred km thick stagnant, near surface layer in the mantle that would have formed rapidly and may have provided the reservoirs required to explain the isotope data. The relation between the planform of mantle convection and the tectonic features on the surface is difficult to entangle. Models call for long wavelength forms of flow and possibly a few strong plumes in the very early evolution. These plumes may have dissolved with time as the core cooled and may have died off by the end of the Noachian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acuña, M.H., et al.:1998, 'Magnetic Field and Plasma Observations at Mars: Initial Results of the Mars Global Surveyor Mission', Science 279, 1676-1680.

    Google Scholar 

  • Acuña, M.H., et al.:1999, 'Global Distribution of Crustal Magnetism Discovered by the Mars Global Surveyor MAG/ER Experiment', Science 284, 790-793.

    Google Scholar 

  • Anderson, R.C., et al.:2000, 'Primary Centers and Secondary Concentrations of Tectonic Activity Through Time in the Western Hemisphere of Mars', J. Geophys. Res., in press.

  • Bandfield, J.L., Hamilton, V.E., and Christensen, P.R.: 2000, 'A Global View of Martian Surface Compositions from MGS-TES', Science 287, 1626-1630.

    Google Scholar 

  • Banerdt, W.B., Golombek, M.P., and Tanaka, K.L.:1992, 'Stress and Tectonics on Mars', in H.H. Kieffer, B.M. Jakosky, C.W. Snyder, and M.S. Matthews (eds.), Mars, Univ. Arizona Press, Tucson, pp. 249-297.

    Google Scholar 

  • Banerdt, W.B., and Golombek, M.P.: 2000, 'Tectonics of the Tharsis Region, Insights from MGS Topography and Gravity', Proc. 31 st Lunar Planet. Sci. Conf., 2038.

  • Bertka, C. M. and Fei, Y.: 1997, 'Mineralogy of the Martian Interior up to Core-Mantle Boundary Pressures', J. Geophys. Res. 102, 5251-5264.

    Google Scholar 

  • Bertka, C. M. and Fei, Y.: 1998, 'Density Profile of an SNC Model Martian Interior and the Moment of Inertia Factor of Mars', Earth Planet. Sci. Lett. 157, 79-88.

    Google Scholar 

  • Benz, W., and Cameron, A.G.W.: 1990, 'Terrestrial Effect of the Giant Impact', in H.E. Newsom and J.H. Jones (ed.), Origin of the Earth, Oxford Univ. Press, Oxford, 61-67.

    Google Scholar 

  • Braginsky, S. I.: 1964, 'Magnetohydrodynamics of the Earth's Core', Geomag. Aeron. 4, 698-712.

    Google Scholar 

  • Breuer, D., and Spohn, T.: 1993, 'Cooling of the Earth, Urey Ratios, and the Problem of Potassium in the Core', Geophys. Res. Lett. 20, 1655-1658.

    Google Scholar 

  • Breuer, D., Spohn, T., and Wüllner, U.: 1993. 'Mantle Differentiation and the Crustal Dichotomy of Mars', Planet. Space Sci. 41, 269-283.

    Google Scholar 

  • Breuer, D., Zhou, H., Yuen, D.A., and Spohn, T.: 1996, 'Phase Transitions in the Martian Mantle: Implications for the Planet's Volcanic Evolution', J. Geophys. Res. 101, 7531-7542.

    Google Scholar 

  • Breuer, D., Yuen, D.A., and Spohn, T.: 1997, 'Phase Transitions in the Martian Mantle: Implications for Partially Layered Convection', Earth Planet. Sci Lett. 148, 457-469.

    Google Scholar 

  • Breuer, D., Yuen, D.A., Spohn, T., and Zhang, S.: 1998, 'Three Dimensional Models of Martian Mantle Convection with Phase Transitions', Geophys. Res. Lett. 25, 229-232.

    Google Scholar 

  • Breuer, D., and Spohn, T.: 2001a, 'Thermal, Volcanic, and Magnetic Field History of Mars', Planet. Space Sci., submitted.

  • Breuer, D., and Spohn, T.: 2001b, 'Plate Tectonics Versus one-Plate Tectonics on Mars: Constraints From the Crustal Evolution', J. Geophys. Res., submitted.

  • Bruhn, D., Groebner, N., and Kohlstedt, D. L.: 2000, 'An Interconnected Network of Core-forming Melts Produced by Shear Deformation', Nature 403, 883-886.

    Google Scholar 

  • Carr, M.H.: 1996, 'Water on Mars', Oxford Univ. Press, New York.

    Google Scholar 

  • Chen, J.H., and Wasserburg, G.J.: 1986, 'Formation Ages and Evolution of Shergotty and its Parent Planet From U-Th-Pb Systematics', Geochim. Cosmochim. Acta 50, 955-968.

    Google Scholar 

  • Chopelas, A., Boehler, R., and Ko, T.: 1994, 'Thermodynamics and Behavior of γ-Mg2SiO4 at High Pressure: Implications for Mg2SiO4 Phase Equilibrium', Phys. Chem. Min. 21, 351-359.

    Google Scholar 

  • Connerney, J.E.P., et al.: 1999, 'Magnetic Lineations in the Ancient Crust of Mars', Science 284, 794-798.

    Google Scholar 

  • Curtis, S.A., and Ness, N.F.: 1988, 'Remanent Magnetism at Mars', Geophys. Res. Lett. 15, 737-739.

    Google Scholar 

  • Davaille, A., and Jaupart, C.: 1993, 'Transient High-Rayleigh-Number Thermal Convection With Large Viscosity Variations', J. Fluid Mech. 253, 141-166.

    Google Scholar 

  • Davies, G.F., and Arvidson, R.E.: 1981, 'Martian Thermal History, Core Segregation, and Tectonics', Icarus 45, 339-346.

    Google Scholar 

  • Dreibus, G., and Wänke, H.: 1985, 'Mars: A Volatile Rich Planet', Meteoritics 20, 367-382.

    Google Scholar 

  • Fei, Y., Prewitt, C.T., Mao, H.K., and Bertka, C.M.:1995, 'Structure and Density of FeS at High Pressure and High Temperature and the Internal Structure of Mars', Science 268, 1892-1894.

    Google Scholar 

  • Folkner, W.M., Yoder, C.F., Yuan, D.N., Standish, E.M., and Preston, R.A.:1997, 'Interior Structure and Seasonal Mass Redistribution of Mars From Radio Tracking of Mars Pathfinder, Science 278, 1749-1752.

    Google Scholar 

  • Grasset, O., and Parmentier, E.M.:1998, 'Thermal Convection in a Volumetrically Heated, Infinite Prandtl Number Fluid With Strongly Temperature-Dependent Viscosity:Implications for Planetary Thermal Evolution, J. Geophys. Res. 103, 18,171-18,181.

    Google Scholar 

  • Greeley, R., and Spudis, N.F.:1978, 'Volcanism in the Cratered Terrain Hemisphere of Mars', Geophys. Res. Lett. 5, 453-455.

    Google Scholar 

  • Greeley, R., and Schneid, B.D.:1991, 'Magma Generation on Mars: Amounts/Rates, and Comparisons With Earth, Moon, and Venus', Science 254, 996-998.

    Google Scholar 

  • Greeley, R., Bridges, N.T., Crown, D.A., Crumpler, L.S., Fagents, S.A., Mouginis-Mark, P.J., and Zimbleman, J.R.:2000, 'Volcanism on the Red Planet: Mars', in J.R. Zimbelmann and T.K.P. Gregg (eds.), Environmental Effects on Volcanic Eruptions: from Deep Oceans to Deep Space, Kluwer Academic/Plenum Publ., New York, pp. 75-112.

    Google Scholar 

  • Halliday, A.N., and Lee, D.-C.:1999, 'Tungsten Isotopes and the Early Development of the Earth and Moon', Geochim. Cosmochim. Acta 63, 4157-4179.

    Google Scholar 

  • Halliday, A.N., Birck, J.L., Clayton, R.N., and Wänke, H.:2001, 'The Accretion, Composition and Early Differentiation of Mars', Space Sci. Rev., this volume.

  • Harder, H.:2000, 'Mantle Convection and the Dynamic Geoid of Mars', Geophys. Res. Lett. 27, 301-304.

    Google Scholar 

  • Harder, H., and Christensen, U.:1996, 'A One-Plume Model of Martian Mantle Convection, Nature 380, 507-509.

    Google Scholar 

  • Harper, C.L., Nyquist, L.E., Bansal, B., Wiesmann, H., and Shih C.-Y.:1995, 'Rapid Accretion and Early Differentiation of Mars Indicated by 142Nd/144Nd in SNC Meteorites', Science 267, 213-217.

    Google Scholar 

  • Harri, A.M., et al.:2000, 'Network Science Landers for Mars', Adv. Space Res., in press.

  • Hartmann, W.K., and Berman, D.C.:2000, 'Elysium Planitia Lava Flows: Crater Count Chronology and Geological Implications', J. Geophys. Res. 105, 15,011-15,026.

    Google Scholar 

  • Hartmann, W.K., Malin M.C., McEwen, A., Carr, M., Soderblom, L., Thomas, P., Danielson, E., James, P., and Veverka, J.:1999, 'Recent Volcanism on Mars from Crater Counts', Nature 397, 586-589.

    Google Scholar 

  • Hartmann, W.K., and Neukum, G.:2001, 'Cratering Chronoloy and the Evolution of Mars', Space Sci. Rev., this volume.

  • Hartmann, W.K., Kallenbach, R., Geiss, J., and Turner, G.:2001, 'Summary:New Views and New Directions in Mars Research', Space Sci. Rev., this volume.

  • Head, J.W., Greeley, R., Golombek, M.P., Hartmann, W.K., Hauber, E., Jaumann, R., Masson, P., Neukum, G., Nyquist, L.E., and Carr, M.H.:2001, 'Geological Processes and Evolution', Space Sci. Rev., this volume.

  • Jagoutz, E., Sorowka, A., Vogel, J.D., and Wänke, H.:1994, 'ALH84001: Alien or Progenitor of the SNC Family', Meteoritics 28, 548-579.

    Google Scholar 

  • Jault, D.:1996, 'Sur l'Inhibition de la régénération du Champ Magnétique dans Certains Modèles de Dynamo Planétaire en Présence d'une Graine Solide', C. R. Acad. Sci. Paris 323, 451-458.

    Google Scholar 

  • Lee, D.-C., and Halliday, A.N.:1997, 'Core Formation on Mars and Differentiated Asteroids', Nature 388, 854-857.

    Google Scholar 

  • Leweling, M., and Spohn, T.:1997, 'Mars: a Magnetic Field due to Thermoremanence?', Planet. Space Sci. 45, 1389-1400.

    Google Scholar 

  • Lodders K.,:1998, 'A Survey of Shergottite, Nakhlite and Chassigny Meteorites Whole-rock Compositions', Met. Planet. Sci. 33, A183-A190.

    Google Scholar 

  • Longhi, J., Knittle, E., Holloway, J.R., and Wänke, H.:1992, 'The Bulk Composition, Mineralogy, and Internal Structure of Mars', in H.H. Kieffer et al. (eds.), Mars, University of Arizona Press, Tucson, pp. 184-208.

    Google Scholar 

  • Matyska, C., Yuen, D., Breuer, D., and Spohn, T.:1998, 'Symmetries of Volcanic Distributions on Mars and its Interior Dynamics', J. Geophys. Res. 103, 28,587-28,597.

    Google Scholar 

  • McEwen, A.S., Malin, M.C., Carr, M.H., and Hartmann, W.K.:1999, 'Voluminous Volcanism on Early Mars Revealed in Valles Marineris', Nature 397, 584-586.

    Google Scholar 

  • Moresi, L.N., and Solomatov, V.S.:1995, 'Numerical Investigation of 2D Convection With Extremely Large Viscosity Variations', Phys. Fluids 7, 2154-2162.

    Google Scholar 

  • Mouginis-Mark, P.J., Wilson, L., and Zuber, M. T.:1992, 'The Physical Volcanology of Mars', in H.H. Kieffer et al. (eds.), Mars, Univ. Arizona Press, Tucson, pp. 424-452.

    Google Scholar 

  • Ness, N.F., et al.:1999, 'MGS Magnetic Fields and Electron Reflectometer Investigation: Discovery of Paleomagnetic Fields due to Crustal Remanence', Adv. Space Res. 23, 1879-1886.

    Google Scholar 

  • Neukum, G., and Hiller, H.:1981, 'Martian Ages', J. Geophys. Res. 86, 3097-3121.

    Google Scholar 

  • Nimmo, F., and Stevenson, D.J., 2000, 'Influence of Early Plate Tectonics on the Thermal Evolution and Magnetic Field of Mars', J. Geophys. Res. 105, 11,969-11,979.

    Google Scholar 

  • Nyquist, K., Bogard, D., Shih, C.-Y., Greshake, A., Stöffler, D., and Eugster, O.:2001, 'Ages and Geologic Histories of Martian Meteorites', Space Sci. Rev., this volume.

  • Phillips, R.J, et al.:2001, 'Ancient Geodynamics and Global Scale Hydrology on Mars', Science, in press.

  • Pike, R.J.:1978, 'Volcanoes on the Inner Planets: Some Preliminary Comparison of Gross Topography', Proc. 9 th Lunar Planet. Sci. Conf., 3239-3273.

  • Plescia, J.B., and Saunders, R.S.:1979, 'The Chronology of the Martian Volcanoes', Proc. 10 th Lunar Planet. Sci. Conf., 2841-2859.

  • Reasenberg, R.D., Shapiro, I.I., and White, R.D.:1975, 'The Gravity Field of Mars', Geophys. Res. Lett. 2, 89-92.

    Google Scholar 

  • Richter, F.M., Nataf, H.C., and Daly, S.F.:1983, 'Heat Transfer and Horizontally Averaged Temperature of Convection With Large Viscosity Variations', J. Fluid Mech. 129, 173-192.

    Google Scholar 

  • Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G., McSween, H.Y., Jr.:1997, 'The Chemical Composition of Martian Soil and Rocks Returned by the Mobile APXS:Preliminary Results from the X-ray Mode', Science 278, 1771-1774.

    Google Scholar 

  • Schubert, G., Cassen, P., and Young, R.E.:1979, 'Subsolidus Convective Cooling Histories of Terrestrial Planets, Icarus 38, 192-211.

    Google Scholar 

  • Schubert, G., and Spohn, T.:1990, 'Thermal History of Mars and the Sulfur-Content of its Core', J. Geophys. Res. 95, 14,095-14,104.

    Google Scholar 

  • Schubert, G., Solomon, S.C., Turcotte, D.L., Drake, M.J., Sleep, N.H.:1992, 'Origin and Thermal Evolution of Mars', in H.H. Kieffer et al. (eds.), Mars, Univ. Arizona Press, Tucson, pp. 147-183.

    Google Scholar 

  • Schubert, G., Russel C.T., Moore, W.B.L.:2000, 'Timing of the Martian Dynamo', Science 408, 666-667.

    Google Scholar 

  • Schultz, R.A., and Tanaka, K.L.:1994, 'Lithospheric-Scale Buckling and Thrust Structures on Mars: The Coprates Rise and South Tharsis Ridge Belt', J. Geophys. Res. 99, 8371-8385.

    Google Scholar 

  • Sleep, N.H.:1994, 'Martian Plate Tectonics', J. Geophys. Res. 99, 5639-5655.

    Google Scholar 

  • Smith, D.E., et al.:1999a, 'The Global Topography of Mars and Implication for Surface Evolution', Science 284, 1495-1503.

    Google Scholar 

  • Smith, D.E., Sjogren, W.L., Tyler, G.L., Balmino, G., Lemoine, F.G., and Konopliv, A.S.:1999b, 'The Gravity Field of Mars:Results from Mars Global Surveyor', Science 286, 94-97.

    Google Scholar 

  • Smith, D.E., et al.:2000, 'Mars Orbiter Laser Altimeter (MOLA):Experiment Summary After the First Year of Global Mapping of Mars', J. Geophys. Res., submitted.

  • Sohl, F., and Spohn, T.:1997, 'The Interior Structure of Mars: Implications from SNC Meteorites', J. Geophys. Res. 102, 1613-1635.

    Google Scholar 

  • Solomatov, V. S.:1995, 'Scaling of Temperature-and Stress-Dependent Viscosity', Phys. Fluids 7, 266-274.

    Google Scholar 

  • Spohn, T.:1991, 'Mantle Differentiation and Thermal Evolution of Mars, Mercury, and Venus', Icarus 90, 222-236.

    Google Scholar 

  • Spohn, T., Sohl, F., and Breuer, D.:1998, 'Mars', Astron. Astrophys. Rev. 8, 181-235.

    Google Scholar 

  • Spohn, T., Konrad, W., Breuer, D., and Ziethe, R.:2001, 'The Longevity of Lunar Volcanism:Implications of Thermal Evolution Calculations With 2D and 3D Mantle Convection Models', Icarus 149, 54-65.

    Google Scholar 

  • Stevenson, D.J.:1990, 'Fluid Dynamics of Core Formation', in H.E. Newsom and J.H. Jones (eds.), Origin of the Earth, Oxford Univ. Press, New York, pp. 231-250.

    Google Scholar 

  • Stevenson, D.J., and Turner, J.S.:1979, 'Fluid Models of Mantle Convection'in M.W. McElhinny (ed.), The Earth, Its Origin, Evolution, and Structure, Wiley, New York, pp. 227-263.

    Google Scholar 

  • Stevenson, D. J., Spohn, T., and Schubert, G.:1983, 'Magnetism and Thermal Evolution of the Terrestrial Planets', Icarus 54, 466-489.

    Google Scholar 

  • Stolper, E., Walker, D., Hager, B. H., and Hays, J. F.:1981, 'Melt Segregation From Partially Molten Source Regions:The Importance of Melt Density and Source Region Size', J. Geophys. Res. 91, 6261-6271.

    Google Scholar 

  • Tanaka, K.L., and Davis, P.A.:1988, 'Tectonic History of the Syria Planum Province of Mars', J. Geophys. Res. 93, 14,893-14,917.

    Google Scholar 

  • Tanaka, K.L., Isbell, N.K., Scott, D.H., Greeley, R., and Guest, J.E.:1988, 'The Resurfacing History of Mars', Proc. 18 th Lunar Planet. Sci. Conf., 665-678.

  • Tanaka, K. L., Golombek, M. P., and Banerdt, W. B.:1991, 'Reconciliation of Stress and Structural Histories of the Tharsis Region of Mars', J. Geophys. Res. 96, 15,617-15,633.

    Google Scholar 

  • Tanaka, K.L., Scott, D.H., and Greeley, R.:1992, 'Global Stratigraphy', in H.H. Kieffer et al. (eds.), Mars, Univ. Arizona Press, Tucson, pp. 345-382.

    Google Scholar 

  • Tozer, D.C.:1967, 'Towards a Theory of Thermal Convection in the Mantle', in T.F. Gaskell (ed.), The Earths's Mantle, Academic Press, London, pp. 325-353.

    Google Scholar 

  • Turcotte, D.L., and Schubert, G.:1982, Geodynamics, Wiley, New York.

    Google Scholar 

  • Treiman, A.H., Drake, M.J., Janssens, M.-J., Wolf, R., and Ebihara, M.:1986, 'Core Formation in the Earth and Shergottite Parent Body (SPB):Chemical Evidence From Basalts', Geochim. Cosmochim. Acta 50, 1071-1091.

    Google Scholar 

  • Wänke, H., and Dreibus, G.:1988, 'Chemical Composition and Accretion History of Terrestrial Planets', Phil. Trans. R. Soc. Lond. A325, 545-557.

    Google Scholar 

  • Wänke, H., Brückner, J., Dreibus, G., and Ryabchikov, I.:2001, 'Chemical Composition of Rocks and Soils at the Pathfinder Site', Space Sci. Rev., this volume.

  • Watts, A.W., Greeley, R., and Melosh, H.J.:1991, 'The Formation of Terrains Antipodal to Major Impacts', Icarus 93, 159-168.

    Google Scholar 

  • Weinstein, S.A.:1995, 'The Effects of a Deep Mantle Endothermic Phase Change on the Structure of Thermal Convection in Silicate Planets', J. Geophys. Res. 100, 11,719-11,728.

    Google Scholar 

  • Wieczorek, M.A., and Phillips, R.J.:1998, 'Potential Anomalies on a Sphere: Applications to the Thickness of the Lunar Crust', J. Geophys. Res. 103, 1715-1724.

    Google Scholar 

  • Wilhelms, D.E., and Squyres, S.W.:1984, 'The Martian Hemispheric Dichotomy may be due to a Giant Impact', Nature 309, 138-140.

    Google Scholar 

  • Wilson, L., and Mouginis-Mark, P.J.:1987, 'Volcanic Input to the Atmosphere from Alba Patera on Mars', Nature 330, 354-357.

    Google Scholar 

  • Wise, D.U., Golombek, M.P., and McGill, G.E.:1979, 'Tectonic Evolution of Mars', J. Geophys. Res. 84, 7934-7939.

    Google Scholar 

  • Zhou, H., Breuer, D., Yuen, D.A., and Spohn, T.:1995, 'Phase Transitions in the Martian Mantle and the Generation of Megaplumes', Geophys. Res. Lett. 15, 1945-1948.

    Google Scholar 

  • Zindler, A., and Hart, S.R.:1986, 'Chemical Geodynamics', Ann. Rev. Earth Planet. Sci. 14, 493-571.

    Google Scholar 

  • Zuber, M.T., et al.:2000, 'Internal Structure and Early Thermal Evolution of Mars from Mars Global Surveyor Topography and Gravity', Science 287, 1788-1793.

    Google Scholar 

  • Zhong, S., and Zuber, M.T.:2001, 'Degree-1 Mantle Convection and Martian Crustal Dichotomy', Nature, submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spohn, T., Acuña, M.H., Breuer, D. et al. Geophysical Constraints on the Evolution of Mars. Space Science Reviews 96, 231–262 (2001). https://doi.org/10.1023/A:1011949306989

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011949306989

Keywords

Navigation