Skip to main content
Log in

Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase gene

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Transgenic broccoli plants expressing a Trichoderma harzianum endochitinase gene were obtained by Agrobacterium tumefaciens-mediated transformation. PCR and Southern blot analysis confirmed the presence of the gene in plants initially selected via resistance to kanamycin. Primary transformants (T0) and selfed progeny (T1) were examined for expression of the endochitinase gene using a fluorometric assay and for their resistance to the fungal pathogens Alternaria brassicicola and Sclerotinia sclerotiorum. All transgenic plants with elevated endochitinase activity had the expected 42 kDa endochitinase band in western blot analysis, whereas no such band was detected in the non-transgenic control. Leaves of most mature T0 plants had 14–37 times higher endochitinase activity than controls; mature T1 plants had higher endochitinase activity (100–200 times that in controls), in part because of lower control values. T0 plantlets in vitro or young plants in soil had higher absolute and relative endochitinase activity. When detached leaves of T0 plants were inoculated with A. brassicicola, lesion size showed a significant negative correlation with endochitinase levels. After inoculation of two-month old T0 plants with A. brassicicola, all 15 transgenic lines tested showed significantly less severe disease symptoms than controls. In contrast, lesion size on petioles of T0 and T1 plants inoculated with S. sclerotiorum was not statistically different from controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ali G.S. and Reisch B.I. 1997. Genetic transformation of grapevine cv. Chancellor as a model system for enhancement of disease resistance. J. Enol. Viticult. 48: 268.

    Google Scholar 

  • Arumuganathan K. and Earle E.D. 1991a. Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208–218.

    Google Scholar 

  • Arumuganathan K. and Earle E.D. 1991b. Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol. Biol. Rep. 9: 229–241.

    Google Scholar 

  • Bolar J.P., Norelli J.L., Wong K.W., Hayes C.K., Harman G.E. and Aldwinckle H.S. 2000. Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90: 72–77.

    Google Scholar 

  • Brants A. 1999. Transformation of tobacco and tomato with fungal endochitinase gene and assays for resistance to nematodes and fungi. Ph.D. dissertation, Cornell University, Ithaca, NY.

    Google Scholar 

  • Brants A. and Earle E.D. 2001. Transgenic tobacco cell cultures expressing a Trichoderma harzianum endochitinase gene release the enzyme into the medium. Plant Cell Rep. 20: 73–78.

    Google Scholar 

  • Broglie K., Chet I., Holliday M., Cressman R., Biddle P., Knowlton S., Mauvais C.J. and Broglie R. 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197.

    Google Scholar 

  • Chareonpornwattana S., Thara K.V., Wang L., Datta S.K., Panbangred W. and Muthukrishnan S. 1999. Inheritance, expression, and silencing of a chitinase transgene in rice. Theor. Appl. Genet. 98: 371–378.

    Google Scholar 

  • Church G.M. and Gilbert W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991.

    Google Scholar 

  • Collinge D.V., Kragh K.M., Mikkelsen J.D., Nielsen K.K., Rasmussen U. and Vad K. 1993. Plant chitinases. Plant J. 3: 31–40.

    Google Scholar 

  • Datla R.S.S., Bekkaoui M.J.K., Pilate G., Dunstan D.I. and Crosby L.W. 1993. Improved high-level constitutive foreign gene expression in plants using an AMV RNA4 untranslated leader sequence. Plant Sci. 94: 139–149.

    Google Scholar 

  • Friesen H.A. and Scarth R. 1998. Comparison of bud pollination and salt spray treatments for use in overcoming self-incompatibility of Brassica rapa doubled haploid lines. Plant Tiss. Cult. Biotechnol. 4: 95–98.

    Google Scholar 

  • Fry J., Barnason A. and Horsch R.B. 1987. Transformation of Brassica napus with Agrobacterium tumefaciens-based vectors. Plant Cell Rep. 6: 321–325.

    Google Scholar 

  • Fukuda Y. and Shinshi H. 1992. Regulation of plant defense genes. Report of the Fermentation Research Institute 0: 105–116.

    Google Scholar 

  • Hayes C.K., Klemsdal S., Lorito M., Di Pietro A., Peterbauer C., Nakas J.P., Tronsmo A. and Harman G.E. 1994. Isolation and sequence of an endochitinase-encoding gene from a cDNA library of Trichoderma harzianum. Gene 138: 143–148.

    Google Scholar 

  • Harman G.E., Hayes C.K., Lorito M., Broadway R.M., Di Pietro A., Peterbauer C. and Tronsmo A. 1993. Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83: 313–318.

    Google Scholar 

  • Holtorf H., Schob H., Kunz C., Waldvogel R. and Meins F. 1999. Stochastic and nonstochastic post-transcriptional silencing of chitinase and β-1,3-glucanase genes involves increased RNA turnover: possible role for ribosome-independent RNA degradation. Plant Cell 11: 471–483.

    Google Scholar 

  • Hu J. and Quiros C.F. 1991. Identification of broccoli and cauliflower cultivars with RAPD markers. Plant Cell Rep. 10: 505–515.

    Google Scholar 

  • Jach G., Gornhardt B., Mundy J., Logemann J., Pinsdorf E., Leah R., Schell J. and Maas C. 1995. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8: 97–109.

    Google Scholar 

  • Kellmann J.W., Kleinow T., Engelhardt K. and Philipp C. 1996. Characterization of two class II chitinase genes from peanut and expression studies in transgenic tobacco plants. Plant Mol. Biol. 30: 351–358.

    Google Scholar 

  • King S.R. 1994. Screening, selection, and genetics of resistance to Alternaria diseases in Brassica oleracea. Ph.D. dissertation, Cornell University, Ithaca, NY.

    Google Scholar 

  • Lin W., Anuratha C.S., Datta K., Potrykus I., Muthukrishnan S. and Datta S.K. 1995. Genetic engineering of rice for resistance to sheath blight. Bio/technology 13: 686–691.

    Google Scholar 

  • Linthorst H.J.M., van Loon L.C., van Rossum C.M.A., Mayor A., Bol K.F., van Roekel J.S.C., Meulenhoff E.J.S. and Cornelissen B.J.C. 1990. Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol. Plant-Microbe Interact. 3: 252–258.

    Google Scholar 

  • Lorito M., Harman G.E., Hayes C.K., Broadway R.M., Tronsmo A., Woo S. L. and Di Pietro A. 1993. Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83: 302–307.

    Google Scholar 

  • Lorito M., Woo S.L., Fernandez I.G., Colucci G., Harman G.E., Pintor T.J.A., Filippone E., Muccifora S., Lawrence C.B., Zoina A., Tuzun S. and Scala F. 1998. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc. Natl. Acad. Sci. USA 95: 7860–7865.

    Google Scholar 

  • Marchant R., Davey M.R., Lucas J.A., Lamb C.J. and Dixon R.A. 1998. Expression of a chitinase transgene in rose (Rosa hybrida L.) reduces development of blackspot disease (Diplocarpon rosae Wolf). Mol. Breed. 4: 187–194.

    Google Scholar 

  • Metz T.D., Dixit R. and Earle E.D. 1995. Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Plant Cell Rep. 15: 287–292.

    Google Scholar 

  • Moloney M.M., Walker J.M. and Sharma K.K. 1989. High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8: 238–242.

    Google Scholar 

  • Mora A.A. 2000. Agrobacterium-mediated transformation of Brassica oleracea var. italica and B. napus with a Trichoderma harzianum endochitinase gene to enhance resistance against fungal pathogens. Ph.D. dissertation, Cornell University, Ithaca, NY.

    Google Scholar 

  • Murashige T. and Skoog F. 1962. A revised medium rapid growth and bioassay with tobacco tissue cultures. Physiol Plant. 15: 473–497.

    Google Scholar 

  • Neuhaus J.M., Ahl-Goy P., Hinz U., Flores S. and Meins F. 1991. High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae. Plant Mol. Biol. 16: 141–151.

    Google Scholar 

  • Neuhaus J.M. 1999. Plant chitinases. In: Datta S.K. and Muthukrishnan S. (eds.), Pathogenesis-Related Proteins in Plants.. CRC Press, Boca Raton, FL, pp. 77–105.

    Google Scholar 

  • Nielsen K.K., Mikkelsen J.D., Kragh K.M. and Bojsen K. 1993. An acidic class III chitinase in sugar beet: induction by Cercospora beticola, characterization, and expression in transgenic tobacco plants. Mol. Plant-Microbe Interact. 6: 495–506.

    Google Scholar 

  • Patil V.R. and Widholm J.M. 1997. Possible correlation between increased vigor and chitinase activity expression in tobacco. J. Exp. Bot. 48: 1943–1950.

    Google Scholar 

  • Punja Z.K. and Raharjo S.H.T. 1996. Response of transgenic cucumber and carrot plants expressing different chitinase enzymes to inoculation with fungal pathogens. Plant Dis. 80: 999–1005.

    Google Scholar 

  • Raharjo S.H.T., Hernandez M.O., Zhang Y.Y. and Punja Z.K. 1996. Transformation of pickling cucumber with chitinase-encoding genes using Agrobacterium tumefaciens. Plant Cell Rep. 15: 591–596.

    Google Scholar 

  • Ruiz-Herrera J. 1992. Fungal Cell Wall: Structure, Synthesis and Assembly. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Sahai A.S. and Manocha M.S. 1993. Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol. Rev. 11: 317–338.

    Google Scholar 

  • Sambrook J., Fritsch E.F. and Maniatis T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Plainview, NY.

    Google Scholar 

  • Tabaeizadeh Z. 1997. Transgenic tomato plants expressing L. chilense chitinase gene demonstrate resistance to Verticillium dahliae. Plant Physiol. 114: 299.

    Google Scholar 

  • Vierheilig H., Alt M., Neuhaus J.M., Boller T. and Wiemken A. 1993. Colonization of transgenic Nicotiana sylvestris plants, expressing different forms of N. tabacum chitinase, by the root pathogen Rhizoctonia solani and the mycorrhizal symbiont Glomus mosseae. Mol. Plant-Microbe Interact. 6: 261–264.

    Google Scholar 

  • Yamamoto T., Iketani H., Ieki H., Nishizawa Y., Notsuka K., Hibi T., Hayashi T. and Matsuta N. 2000. Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep. 19: 639–646.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.D. Earle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mora, A., Earle, E. Resistance to Alternaria brassicicola in transgenic broccoli expressing a Trichoderma harzianum endochitinase gene. Molecular Breeding 8, 1–9 (2001). https://doi.org/10.1023/A:1011913100783

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011913100783

Navigation