Skip to main content
Log in

The Martian Surface Composition

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Mars is unique to have undergone all planetary evolutionary steps, without global resets, till its geological death: this is reflected in the variety of its surface features. The determination of Mars surface composition has thus the potential to identify the processes responsible for the entire Mars evolution, from geological timescales to seasonal variations. Due to technical challenges, only few investigations have been performed so far. They are summarized in this paper, and their interpretation is discussed in terms of surface materials (minerals, ices and frosts).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J.B., and McCord, T.B.: 1969, 'Mars: Interpretation of Spectral Reflectivity of Light and Dark Regions', J. Geophys. Res. 74, 4851-4856.

    Google Scholar 

  • Allen, C.C., Gooding, J.L., Jercinovic, M., and Keil, K.: 1981, 'Altered Basaltic Glass-A Terrestrial Analog to the Soil of Mars', Icarus 45, 347-369.

    Google Scholar 

  • Bandfield, J., Hamilton, V., and Christensen, P.: 2000, 'A Global View of Martian Surface Composition from MGS-TES', Science 287, 1626-1630.

    Google Scholar 

  • Banin, A., and Margulies, L.: 1983, 'Simulation of Viking Biology Experiments Suggests Smectites, not Palagonites, as Martian Soil Analogs', Nature 305, 523-525.

    Google Scholar 

  • Banin, A., Clark, B.C., and Wänke, H.: 1992, 'Surface Chemistry and Mineralogy', in H. Kieffer, B. Jakosky, C. Snyder, and M. Matthews (eds.), Univ. Arizona Press, Tucson, pp. 594-625.

    Google Scholar 

  • Bell, J.: 1996, 'Iron, Sulfate, Carbonate, and Hydrated Minerals on Mars', in M.D. Dyar, C. Mc-Cammon, and M.W. Schaefer (eds.), Mineral Spectroscopy: A Tribute to Roger G. Burns, Geochemical Society, pp. 359-380.

  • Bell, J.F., McCord, T.B., and Owensby, P.D.: 1990, 'Observational Evidence of Crystalline Iron Oxides on Mars', J. Geophys. Res. 95, 14,447-14,462.

    Google Scholar 

  • Berkley, J.L., and Drake, M.J.: 1981, 'Weathering of Mars-Antarctic Analog Studies', Icarus 45, 231-249.

    Google Scholar 

  • Bibring, J.-P., et al.: 1989, 'Results from the ISM Experiment', Nature 341, 591-592.

    Google Scholar 

  • Binder, A.B., Arvidson, R.E., Guinness, E.A., Jones, K.L., Mutch, T.A., Morris, E.C., Pieri, D.C., and Sagan, C.: 1977, 'The Geology of the Viking Lander 1 Site', J. Geophys. Res. 82, 4439-4451.

    Google Scholar 

  • Bishop, J., and Pieters, C.: 1995, 'Low-temperature and Low Atmospheric Pressure Infrared Reflectance Spectra of Mars Soil Analog Materials', J. Geophys. Res. 100, 5369-5379.

    Google Scholar 

  • Bishop, J., Pieters, C., Burns, R., Edwards, J., Mancinelli, R., and Fröschl, H.: 1995, 'Reflectance Spectroscopy of Ferric Sulfate-bearing Montmorillonites as Mars Soil Analog Materials', Icarus 117, 101-119.

    Google Scholar 

  • Calvin, W.M., and King, T.: 1997, 'Spectral Characteristics of Fe-bearing Phyllosilicates: Comparison to Orgueil, Murchison and Murray', Met. Planet. Sci. 32, 693-702.

    Google Scholar 

  • Calvin, W.M., and Martin, T.Z.: 1994, 'Spectra Variability in the Seasonal South Polar Cap of Mars', J. Geophys. Res. 99, 21,143-21,152.

    Google Scholar 

  • Chassefière, E., Drossart, P., and Korablev, O.: 1995, 'Post-Phobos Model for the Altitude and Size Distribution of Dust in the Low Martian Atmosphere', J. Geophys. Res. 100, 5525-5539.

    Google Scholar 

  • Christensen, P.R., et al.: 1998, 'Results from the Mars Global Surveyor Thermal Emission Spectrometer', Science 279, 1692-1695.

    Google Scholar 

  • Christensen, P.R., et al.: 2000a, 'Detection of Crystalline Hematite Mineralization on Mars by the Thermal Emission Spectrometer:E vidence for Near-surfaceWater', J. Geophys. Res. 105, 9623-9642.

    Google Scholar 

  • Christensen, P.R., Bandfield, J.L., Smith, M.D., Hamilton, V.E., and Clark, R.N.: 2000b, 'Identification of a Basaltic Component on the Martian Surface from Thermal Emission Spectrometer Data', J. Geophys. Res. 105, 9609-9622.

    Google Scholar 

  • Clancy, R.T., and Lee, S.W.: 1991, 'A New Look at Dust and Clouds in the Mars Atmosphere: Analysis of Emission-phase-function Sequences from Global Viking IRTM Observations', Icarus 93, 135-158.

    Google Scholar 

  • Clark, R.N., and McCord, T.B.: 1982, 'Mars Residual Polar Cap: Earth-based Spectroscopic Confirmation of Water Ice as a Major Constituent and Evidence for Hydrated Minerals', J. Geophys. Res. 87, 367-370.

    Google Scholar 

  • Clark, B.C., Baird, A.K., Weldon, R.J., Tsusaki, D.M., Schnabel, L., and Candelaria, M.P.: 1982, 'Chemical Composition of Martian Fines', J. Geophys. Res. 87, 10,059-10,067.

    Google Scholar 

  • Drossart, P., Rosenqvist, J., Erard, S., Langevin, Y., Bibring, J.-P., and Combes, M.: 1991, 'Martian Aerosols Properties from the Phobos/ISM Experiment', Annal. Geophys. 9, 754-760.

    Google Scholar 

  • Erard, S.: 2000, 'The 1994-95 Apparition of Mars Observed from Pic-du-Midi', Planet. Space Sci. 48, 1271-1287.

    Google Scholar 

  • Erard, S., and Calvin, W.: 1997, 'New Composite Spectra of Mars, 0.4-5.7 µm', Icarus 130, 449-460.

    Google Scholar 

  • Erard, S., et al.: 1991, 'Spatial Variations in Composition of the Valles Marineris and Isidis Planitia Regions of Mars Derived from the ISM Data', Proc. 21 st Lunar Planet. Sci. Conf., 437-455.

  • Erard, S., Mustard, J., Murchie, S., Bibring, J.-P., Cerroni, P., and Coradini, A.: 1994, 'Effects of Aerosols Scattering on Near-infrared Observations of theMartian Surface', Icarus 111, 317-337.

    Google Scholar 

  • Fischer, E.M., and Pieters, C.M.: 1993, 'The Continuum Slope of Mars:B i-directional Reflectance Investigations and Applications to Olympus Mons', Icarus 102, 185-202.

    Google Scholar 

  • Gaffey, S.J., McFadden, L.A., Nash, D., and Pieters, C.: 1993, 'Ultraviolet, Visible, and Near-infrared Reflectance Spectroscopy:L aboratory Spectra of Geologic Materials', in C.M. Pieters and P.A. Englert (eds.), Remote Geochimical Analysis: Elemental and Mineralogical Composition, Cambridge University Press, pp. 43-77.

  • Golden, D.C., Ming, D.W., Schwandt, C.S., Morris, R.V., Yang S.V., and Lofgren, G.E.: 2000, 'An Experimental Study on Kinetically-driven Precipitation of Calcium-magnesium-iron Carbonates from Solution:I mplications for the Low-temperature Formation of Carbonates in Martian Allan Hills 84001', Met. Planet. Sci. 35, 457-465.

    Google Scholar 

  • Gooding, J.L.: 1992, 'Soil Mineralogy on Mars: Possible Clues from Salts and Clay in SNC Meteorites', Icarus 99, 28-41.

    Google Scholar 

  • Grassi, D., and Formisano, V.: 2000, 'IRIS Mariner 9 Data Revisited: 2. Aerosol Dust Composition', Planet. Space Sci. 48, 577-598.

    Google Scholar 

  • Hamilton, V., Bandfield, J., and Christensen, P.: 2000, 'The Mineralogy of Martian Dark Regions fromMGS TES Data:Prelimin ary Determination of Pyroxene and Feldspar Compositions', Proc. 31 st Lunar Planet. Sci., LPI, Houston, abstract #1824.

    Google Scholar 

  • Hanel, R., et al.: 1972, 'Investigation of the Martian Environment by Infrared Spectroscopy on Mariner 9', Icarus 17, 47-56.

    Google Scholar 

  • Hoefen, T.M., Clark, R.N., Pearl, J.C., and Smith, M.D.: 2000, 'Unique Spectral Features in Mars Global Surveyor Thermal Emission Spectra:Implications for Surface Mineralogy in Nili Fossae', in 32 nd Annual DPS Meeting, Bull Am. Astron. Soc., (abstract).

  • Hunt, G.R., Salisbury, J.W., and Lenhoff, C.J.: 1973, 'Visible and Near-infrared Spectra of Minerals and Rocks:VI, Additional Silicates', Mod. Geol. 4, 85-106.

    Google Scholar 

  • Hviid, S.F., et al.: 1997, 'Magnetic Properties Experiments on the Mars Pathfinder Lander: Preliminary Results', Science 278, 1768-1771.

    Google Scholar 

  • Kieffer, H.H., and Zent: 1992, 'Quasi-periodic Climate Change on Mars', in H.H. Kieffer, B.M. Jakosky, C.W. Snyder and M.S. Matthews (eds.), Mars, Univ. Arizona Press, Tucson, pp. 1180-1218.

    Google Scholar 

  • Kieffer, H.H., Martin, T.Z., Peterfreund, A.R., Jakosky, B.M., Miner, E.D., and Palluconi, F.D.: 1977, 'Thermal and Albedo Mapping of Mars During the Viking Primary Mission', J. Geophys. Res. 82, 4249-4291.

    Google Scholar 

  • Kirkland, L.E., and Herr, K.C.: 2000, 'Spectral Anomalies in the 11 and 12 µm Region from the Mariner Mars 7 Infrared Spectrometer', J. Geophys. Res. 105, 22,507-22,516.

    Google Scholar 

  • Kirkland, L., Forney, P., and Herr, K.: 1998, 'Mariner Mars 6/7 Infrared Spectra:Ne w Calibration and a Search for Water Ice Clouds', in: Lunar Planet. Sci. XXIX, Lunar and Planetary Institute, abstract #1516.

  • Klein, H.P., Horowitz, N.H., and Biemann, K.: 1992, 'The Search for Extant Life on Mars', in H. Kieffer, B. Jakosky, C. Snyder, and M. Matthews (eds.), University of Arizona Press, Tucson, pp. 1221-1233.

    Google Scholar 

  • Ksanfomality, L., et al.: 1991, 'Phobos: Spectrophotometry Between 0.3 and 0.6 µm and IRradiometry', Planet. Space Sci. 39, 311-325.

    Google Scholar 

  • Lellouch, E., Encrenaz, T., de Graauw, T., Erard, S., Morris, P., Feuchtgruber, H., Crovisier, J., Girard, T., and Burgdorf, M.: 2000, 'The 2.4-45 µm Spectrum of Mars Observed with the Infrared Space Observatory', Planet. Space Sci., in press.

  • Martin, P., Pinet, P., Bacon, R., Rousset, A., and Bellagh, F.: 1996, 'Martian Surface Mineralogy from 0.8 to 1.05 µm TIGER Spectro-imagery Measurements in Terra Sirenum and Tharsis Montes Formation', Planet. Space Sci. 44, 859-888.

    Google Scholar 

  • McCord, T.B., and Adams, J.B.: 1969, 'Spectral Reflectivity of Mars', Science 163, 1058-1060.

    Google Scholar 

  • McKay, D.S., Gibson, E.K., Jr., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R., and Zare, R.N.: 1996, 'Search for Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001', Science 273, 924-930.

    Google Scholar 

  • McSween, H.Y., Jr.: 1994, 'What Have we Learned About Mars from SCN Meteorites', Meteoritics 29, 757-779.

    Google Scholar 

  • Moersch, J.E., Hayward, T.L., Nicholson, P.D., Suyres, S.W., Van Cleve, J., and Christensen, P.R.: 1997, 'Identification of a 10-µm Silicate Absorption Feature in the Acidalia Region of Mars', Icarus 126, 183-196.

    Google Scholar 

  • Moroz, V.I.: 1964, 'The Infrared Spectrum of Mars (1.1-4.1 µm)', Soviet Astron. 8, 273-281.

    Google Scholar 

  • Morris, R., Agresti, D., Lauer, H., Newcomb, J., Shelfer, T., and Murali, A.: 1989, 'Evidence for Pigmentary Hematite on Mars Based on Optical, Magnetic and Mössbauer Study of Superparamagnetic (Nanocrystalline) Hematite', J. Geophys. Res. 94, 2760-2778.

    Google Scholar 

  • Morris, P., de Graauw, T., Lellouch, E., Henderson, B.G., Erard, S., Encrenaz, T., Feuchtgruber, H., Burgdorf, M., and Davis, G.R.: 2001, 'A Detailed Assessment of Carbonates in Thermal Infrared Spectroscopy of Mars with the ISO Short Wavelength Spectrometer, Icarus, submitted.

  • Murchie, S., Kirkland, L., Erard, S., Mustard, J., and Robinson, M.: 2000, 'Near-Infrared Spectral Variations of Martian Surface Materials from ISMImaging Spectrometer Data', Icarus 147, 444-471.

    Google Scholar 

  • Murray, B., et al.: 1991, 'Preliminary Assessment of Termoskan Observations of Mars', Planet. Space Sci. 39, 237-265.

    Google Scholar 

  • Mustard, J.F., and Sunshine, J.M.: 1995, 'Seeing Through the Dust:Martian Crustal Heterogeneity and Links to the SNC Meteorites', Science 267, 1623-1626.

    Google Scholar 

  • Mustard, J., Erard, S., Bibring, J.-P., Head, J.W., Hurtrez, S., Langevin, Y., Pieters, C.M., and Sotin, C.J.: 1993, 'The Surface of Syrtis Major: Composition of the Volcanic Substrate and Mixing with Altered Dust and Soil', J. Geophys. Res. 98, 3387-3400.

    Google Scholar 

  • Mustard, J., Murchie, S., Erard, S., and Sunshine, J.: 1997, 'In Situ Compositions of Martian Volcanics:Implications for the Mantle', J. Geophys. Res. 102, 25,605-25,615.

    Google Scholar 

  • Pimentel, G.C., Forney, P.B., and Herr, K.C.: 1974, 'Evidence About Hydrate Solid Water in the Martian Surface from the 1969 Mariner Infrared Spectrometer', J. Geophys. Res. 79, 1623-1634.

    Google Scholar 

  • Pinet, P., and Chevrel, S.: 1990, 'Spectral Identification of Geological Units on the Surface of Mars Related to the Presence of Silicates from Earth-based Near-infrared Telescopic Charge-coupled Device Imaging', J. Geophys. Res. 95, 14,435-14,446.

    Google Scholar 

  • Pollack, J.B., et al.: 1990, 'Thermal Emission Spectra of Mars (5.4-10.5 µm):Evidence for Sulphates, Carbonates, and Hydrates, J. Geophys. Res. 95, 14,595-14,628.

    Google Scholar 

  • Rieder, R., Economou, T., Wänke, H., Turkevich, A., Crisp, J., Brückner, J., Dreibus, G., and Mc-Sween, H.Y.J.: 1997, 'The Chemical Composition of Martian Soil and Rocks Returned by the Mobile Alpha Proton X-ray Spectrometer:Preliminary Results from the X-ray Mode', Science 278, 1771-1773.

    Google Scholar 

  • Roush, T., Roush, E., Singer, R., and Lucey, P.: 1992, 'Estimates of Absolute Flux and Radiance Factor of Localized Regions of Mars in the (2-4 µm) Wavelength Region', Icarus 99, 42-50.

    Google Scholar 

  • Roush, T.L., Blaney, D.L., and Singer, R.B.: 1993, 'The Surface Composition of Mars as Inferred from Spectroscopic Observations', in C.M. Pieters and P.A. Englert (eds.), Remote Geochimical Analysis: Elemental and Mineralogical Composition, Cambridge Univ. Press, New York, pp. 367-397.

    Google Scholar 

  • Salisbury, J.W.: 1993, 'Mid-infrared Spectroscopy: Laboratory Data', in C.M. Pieters and P.A. Englert (eds.), 'Remote Geochimical Analysis:Elemental and Mineralogical Composition', Cambridge Univ. Press, pp. 79-98.

  • Singer, R.B.: 1981, Near-infrared Spectral Reflectance of Mineral Mixtures-Systematic Combinations of Pyroxenes, Olivine, and Iron Oxides', J. Geophys. Res. 86, 7967-7982.

    Google Scholar 

  • Singer, R.B.: 1982, 'Spectral Evidence for the Mineralogy of High-albedo Soils and Dust on Mars', J. Geophys. Res. 87, 10,159-10,168.

    Google Scholar 

  • Soderblom, L.: 1992, 'The Composition and Mineralogy of the Martian Surface from Spectroscopic Observations:0.3 µm to 50 µm', in H. Kieffer, B. Jakosky, C. Snyder, and M. Matthews (eds.), Mars, Univ. Arizona Press, Tucson, pp. 557-597.

    Google Scholar 

  • Toon, O.B., Pollack, J.B., and Sagan, C.: 1977, 'Physical Properties of the Particles Composing the Martian Dust Storm of 1971-1972', Icarus 30, 663-696.

    Google Scholar 

  • Treiman, A.H., Gleason, J.D., and Bogard, D.D.: 2000, 'The SNC Meteorites are from Mars', Planet. Space Sci. 48, 1213-1230.

    Google Scholar 

  • Wänke, H., Brückner, J., Dreibus, G., Rieder, R., and Ryabchikov, I.: 2001, 'Chemical Composition of Rocks and Soils at the Pathfinder Site', Space Sci. Rev., this volume.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bibring, JP., Erard, S. The Martian Surface Composition. Space Science Reviews 96, 293–316 (2001). https://doi.org/10.1023/A:1011909708806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011909708806

Keywords

Navigation