Skip to main content
Log in

Complexity and Verisimilitude: Realism for Ecology

  • Published:
Biology and Philosophy Aims and scope Submit manuscript

Abstract

When data are limited, simple models of complex ecological systems tend to wind up closer to the truth than more complex models of the same systems. This greater proximity to the truth, or “verisimilitude,” leads to greater predictive success. When more data are available, the advantage of simplicity decreases, and more complex models may gain the upper hand. In ecology, holistic models are usually simpler than reductionistic models. Thus, when data are limited, holistic models have an advantage over reductionistic models, with respect to verisimilitude and predictive success. I illustrate these points with models designed to explain and predict the numbers of species on islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, T.F.H. andHoekstra, T.W.: 1992, Toward a Unified Ecology, Columbia University Press, New York, NY.

    Google Scholar 

  • Brown, J.H.,Morgan Ernest, S.K.,Parody, J.M. andHaskell, J.P.: 2001, ‘Regulation of Diversity: Maintenance of Species Richness in Changing Environments', Oecologia 126, 321-332.

    Google Scholar 

  • Brown, J.R.: 1985, ‘Explaining the Success of Science', Ratio 27, 49-66.

    Google Scholar 

  • Browne, M.W.: 2000, ‘Cross-Validation Methods', Journal of Mathematical Psychology 44, 108-132.

    Google Scholar 

  • Burnham, K.P. andAnderson, D.R.: 1998, Model Selection and Inference: A Practical Information-Theoretic Approach, Springer, New York, NY.

    Google Scholar 

  • Forster, M.R. andSober, E.: 1994, ‘How to TellWhen Simpler, More Unified, or Less Ad Hoc Theories will Provide More Accurate Predictions', British Journal for the Philosophy of Science 45, 1-35.

    Google Scholar 

  • Griffiths, T.A. andKlingener, D.: 1988, ‘On the Distribution of Greater Antillean Bats', Biotropica 20, 240-251.

    Google Scholar 

  • Hacking, I.: 1980, ‘Experimentation and Scientific Realism', Philosophical Topics 13, 71-87.

    Google Scholar 

  • Hanski, I.: 1992, ‘Inferences from Ecological Incidence Functions', The American Naturalist 139, 657-662.

    Google Scholar 

  • Haeckel, E.: 1866, Generelle Morphologie der Organismen: Allgemeine Grundzüge der Organischen Formen-Wissenschaft, Mechanisch Begründet durch die von Charles Darwin Reformirte Descendenz-Theorie, Reimer, Berlin, Germany.

    Google Scholar 

  • Heatwole, H. andLevins, R.: 1972, ‘Trophic Structure Stability and Faunal Change during Recolonization', Ecology 53, 531-534.

    Google Scholar 

  • Kieseppä, I.A.: 1996, Truthlikeness for Multidimensional, Quantitative Problems, Kluwer, Boston, MA.

    Google Scholar 

  • Laudan, L.: 1981, ‘A Confutation of Convergent Realism', Philosophy of Science 48, 19-49.

    Google Scholar 

  • Levins, R.: 1966, ‘The Strategy of Model Building in Population Biology', American Scientist 54, 421-431.

    Google Scholar 

  • Levins, R. andLewontin, R.: 1982, ‘Dialectics and Reductionism in Ecology', in E. Saarinen (ed.), Conceptual Issues in Ecology, D. Reidel, Boston.

    Google Scholar 

  • Niiniluoto, I.: 1998, ‘Verisimilitude: The Third Period', British Journal for the Philosophy of Science 49, 1-29.

    Google Scholar 

  • Peters, R.H.: 1991, A Critique for Ecology, Cambridge University Press, New York, NY.

    Google Scholar 

  • Rosenzweig, M.L.: 1995, Species Diversity in Space and Time, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Ruse, M.: 1988, Philosophy of Biology Today, State University of New York Press, Albany, NY.

    Google Scholar 

  • Saarinen, E. (ed.): 1982, Conceptual Issues in Ecology, D. Reidel, Boston, MA.

    Google Scholar 

  • Scheiner, S.M.: 1993, ‘Introduction: Theories, Hypotheses, and Statistics', in S.M. Scheiner andJ. Gurevitch (eds), Design and Analysis of Ecological Experiments, Chapman and Hall, New York, NY, pp. 1-13.

    Google Scholar 

  • Shrader-Frechette, K.S. andMcCoy, E.D.: 1993, Method in Ecology: Strategies for Conservation, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Simberloff, D.: 1982, ‘A Succession of Paradigms in Ecology: Essentialism to Materialism and Probabilism', in E. Saarinen (ed.), Conceptual Issues in Ecology, D. Reidel, Boston.

    Google Scholar 

  • Sterelny, K. andGriffiths, P.: 1999, Sex and Death: An Introduction to Philosophy of Biology, University of Chicago Press, Chicago, IL.

    Google Scholar 

  • Wilcox, B.A.: 1978, ‘Supersaturated Island Faunas: A Species-Age Relationship for Lizards on Post-Pleistocene Land-Bridge Islands’, Science 199, 996-998.

    Google Scholar 

  • Williams, G.C.: 1966, Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Wimsatt, W.C.: 1982, ‘Reductionistic Research Strategies and Their Biases in the Units of Selection Controversy’, in E. Saarinen (ed.), Conceptual Issues in Ecology, D. Reidel, Boston.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikkelson, G.M. Complexity and Verisimilitude: Realism for Ecology. Biology & Philosophy 16, 533–546 (2001). https://doi.org/10.1023/A:1011905829922

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011905829922

Navigation