Skip to main content
Log in

Structural comparison between wild-type and P25S human cystatin A by NMR spectroscopy. Does this mutation affect the α-helix conformation ?

  • Published:
Journal of Structural and Functional Genomics

Abstract

The effect of substituting Pro25, located in the α-helical region of the cystatin A structure, with Ser has been studied. The structures of wild type and P25S cystatin A were determined by multidimensional NMR spectroscopy under comparable conditions. These two structures were virtually identical, and the α-helix between Glu15-Lys30 exists with uninterrupted continuity, with a slight bend at residue 25. In order to characterize the possible substitution effects of Pro25 with Ser on the α-helix, the chemical shifts of the amide nitrogens and protons, the generalized order parameters obtained by the analyses of the 15N-1H relaxation data, the amide proton exchange rates, and the NOE networks among the α-helical and surrounding residues were carefully compared. None of these parameters indicated any significant static or dynamic structural differences between the α-helical regions of the wild-type and P25S cystatin A proteins. We therefore conclude that our previous structure of the wild-type cystatin A, in which the α-helix exhibited a sharp kink at Pro25, must be revised. The asymmetric distribution of hydrophobic interactions between the side-chain residues of the α-helix and the rolled β-sheet surface, as revealed by NOEs, may be responsible for the slight bend of the α-helix in both variants and for the destabilized hydrogen bonding of the α-helical residues that follow Pro25/Ser25, as evidenced by increased amide exchange rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Barret, A. J., Rawlings, N., Davies, M., Machleidt, W., Salvesen, G., and Turk, V. (1986) Proteinase Inhibitors, Elsevier Science Publishers BV, The Netherlands.

    Google Scholar 

  2. Barrett, A. J., Fritz, H., Grubb, A., Isemura, S., Järvinen, M., Katunuma, N., Machleidt, W., Müller-Esterl, W., Sasaki, M., and Turk, V. (1986) Biochem. J. 236, 312

    PubMed  CAS  Google Scholar 

  3. Turk, V., and Bode, W. (1991) FEBS Lett. 285, 213–129.

    Article  PubMed  CAS  Google Scholar 

  4. Martin, J. R., Craven, C. J., Jerala, R., Kroon-Zitko, L., Zerovnik, E., Turk, V., and Waltho, J. P. (1995) J. Mol. Biol. 246, 331–343.

    Article  PubMed  CAS  Google Scholar 

  5. Tate, S., Ushioda, T., Utsunomiya-Tate, N., Shibuya, K., Ohyama, Y., Nakano, Y., Kaji, H., Inagaki, F., Samejima, T., and Kainosho, M. (1995) Biochemistry 34, 14637–14648.

    Article  PubMed  CAS  Google Scholar 

  6. Engh, R. A., Dieckmann, T., Bode, W., Auerswald, E. A., Turk, V., Huber, R., and Oschkinat, H. (1993) J. Mol. Biol. 234, 1060–1069.

    Article  PubMed  CAS  Google Scholar 

  7. Consler, T. G., Tsolas, O., and Kaback, H. R. (1991) Biochemistry 30, 1291–1298.

    Article  PubMed  CAS  Google Scholar 

  8. Chakrabarti, P., and Chakrabarti, S. (1998) J. Mol. Biol. 284, 867–873.

    Article  PubMed  CAS  Google Scholar 

  9. Gu, Y., Kar, T., and Scheiner, S. (1999) J. Am. Chem. Soc. 121, 9411–9422.

    Article  CAS  Google Scholar 

  10. Kaji, H., Kumagai, I., Takeda, A., Miura, K., and Samejima, T. (1989) J. Biochem. (Tokyo) 105, 143–147.

    CAS  Google Scholar 

  11. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR 6, 277–293.

    Article  PubMed  CAS  Google Scholar 

  12. Garrett, D. S., Powers, R., Gronenborn, A. M., and Clore, G. M. (1991) J. Magn. Reson. 95, 214–220.

    CAS  Google Scholar 

  13. Muhandiram, D. R., and Kay, L. E. (1994) J. Magn. Reson. B103, 203–216.

    Google Scholar 

  14. Grzesiek, S., Ikura, M., Clore, G. M., Gronenborn, A. M., and Bax, A. (1992) J. Magn. Reson. 96, 215–221.

    CAS  Google Scholar 

  15. Kay, L. E., Ikura, M., and Bax, A. (1990) J. Am. Chem. Soc. 112, 888–889.

    Article  CAS  Google Scholar 

  16. Bax, A., Clore, G. M., and Gronenborn, A. M. (1990) J. Magn. Reson. 88, 425–431.

    CAS  Google Scholar 

  17. Fesik, S., and Zuiderweg, E. R. P. (1988) J. Magn. Reson. 78, 588–593.

    Google Scholar 

  18. Ikura, M., Kay, L. E., Tschudin, R., and Bax, A. (1990) J. Magn. Reson. 86, 204–209.

    CAS  Google Scholar 

  19. Archer, S. J., Ikura, M., Torchia, D. A., and Bax, A. (1991) J. Magn. Reson. 95, 636–641.

    CAS  Google Scholar 

  20. Kuboniwa, H., Grzesiek, S., Delaglio, F., and Bax, A. (1994) J. Biomol. NMR 4, 871–878.

    Article  PubMed  CAS  Google Scholar 

  21. Güntert, P., Mumenthaler, C., and Wüthrich, K. (1997) J. Mol. Biol. 273, 283–398.

    Article  PubMed  Google Scholar 

  22. Güntert, P., Braun, W., and Wüthrich, K. (1991) J. Mol. Biol. 217, 517–530.

    Article  PubMed  Google Scholar 

  23. Brünger, A. T. (1992) X-PLOR, a system for X-ray crystallography and NMR, Yale University Press, New Haven.

    Google Scholar 

  24. Koradi, R., Billeter, M., and Wüthrich, K. (1996) J. Mol. Graph. 14, 51–55.

    Article  PubMed  CAS  Google Scholar 

  25. Kay, L. E., Torchia, D. A., and Bax, A. (1989) Biochemistry 28, 8972–8979.

    Article  PubMed  CAS  Google Scholar 

  26. Kördel, J., Skelton, N. J., Akke, M., Palmer, A. I., and Chazin, W. J. (1992) Biochemistry 31, 4856–4866.

    Article  PubMed  Google Scholar 

  27. Mine, S., Tate, S., Ueda, T., Kainosho, M., and Imoto, T. (1999) J. Mol. Biol. 286, 1547–1565.

    Article  PubMed  CAS  Google Scholar 

  28. Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R. and Thornton, J. M. (1996) J. Biomol. NMR 8, 477–486.

    Article  PubMed  CAS  Google Scholar 

  29. Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546–4559.

    Article  CAS  Google Scholar 

  30. Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc. 104, 4559–4570.

    Article  CAS  Google Scholar 

  31. Clore, G. M., Driscoll, P. C., Wingfield, P. T. and Gronenborn, A. M. (1990) Biochemistry 29, 7387–7401.

    Article  PubMed  CAS  Google Scholar 

  32. Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C. and Gronenborn, A. M. (1990) J. Am. Chem. Soc. 112, 4989–4991.

    Article  CAS  Google Scholar 

  33. Chou, K. C., Carlacci, L., and Maggiora, G. M. (1990) J. Mol. Biol. 213, 315–326.

    PubMed  CAS  Google Scholar 

  34. Shibuya, K., Kaji, H., Itoh, T., Ohyama, Y., Tsujikami, A., Tate, S., Takeda, A., Kumagai, I., Hirao, I., Miura, K., Inagaki, F., and Samejima, T. (1995) Biochemistry 34, 12185–12192.

    Article  PubMed  CAS  Google Scholar 

  35. Thiele, U., Assfalg-Machleidt, I., Machleidt, W., and Auerswald, E. A. (1990) Biol. Chem. Hoppe-Seyler 371 (Suppl.), 125–136.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimba, N., Kariya, E., Tate, Si. et al. Structural comparison between wild-type and P25S human cystatin A by NMR spectroscopy. Does this mutation affect the α-helix conformation ?. J Struct Func Genom 1, 26–42 (2000). https://doi.org/10.1023/A:1011380315619

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011380315619

Navigation