Skip to main content
Log in

Overview of Atmospheric Pressure Discharges Producing Nonthermal Plasma

  • Published:
Plasmas and Polymers

Abstract

Recently, much attention has been paid to gas discharges producing nonthermal plasma because of many potential benefits in industrial applications. Historically, past work focused on Dielectric Barrier (silent) Discharges (DBD) and pulse-periodical corona discharges. Recently, a number of new different discharge techniques succeeded in producing stable gas discharge at atmospheric pressure. Among these are repetitively pulsed glow discharge; continuous glow discharge in a gas flow; hollow-cathode atmospheric pressure discharge; RF and microwave (MW) discharges. Several new variants of the DBD have been demonstrated over a rather wide range of frequencies. All these forms of gas discharge are characterized by a strong nonequilibrium plasma state. We attempt to classify these discharges with respect to their properties, and an overview of possible applications is made. Conditions for the existence of homogenous and filamentary forms of each of the discharge types are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Ecker, W. Kroell, and O. Zoeller, Phys. Fluids 7, 2008 (1964).

  2. L. Civitano, Non-Thermal Plasma Techniques for Pollution Control Part B, B. M. Penetrante and S. E. Schultheis, ed., NATO ASI Series G34, 1993) p.103; J.-S. Chang, P. A. Lawless, and T. Yamamoto, IEEE Trans. Plasma Sci. 19, 1152 (1991).

  3. L.A. Rosocha, Plasma Science and the Environment, W. Manheimer, L. E. Sugiyama, and T.H. Stix, eds., American Institute of Physics, Woodbury, New York (1997) p. 261.

    Google Scholar 

  4. V. Y. Baranov, V. M. Borisov, and Y. Y. Stepanov, Electric Discharge Excimer Noble-Gas Halides Lasers, Energoatomizdat, Moscow (1988).

    Google Scholar 

  5. A. P. Napartovich, Yu. S. Akishev, A. A. Deryugin, I. V. Kochetov, and N. I. Trushkin, Non-Thermal Plasma Techniques for Pollution Control, Part B, B. M. Penetrante and S. E. Schultheis, eds., NATO ASI Series G 34, (1993) p. 355.

  6. Yu. S. Akishev, A. A. Deryugin, I. V. Kochetov, A. P. Napartovich, and N. I. Trushkin, J. Phys. D.: Appl. Phys. 26, 1630 (1993).

    Google Scholar 

  7. Yu. S. Akishev, A. A. Deryugin, V. B. Karal'nik, I. V. Kochetov, A. P. Napartovich, and N.I. Trushkin, Plasma Physics Rep. 20, 511 (1994).

    Google Scholar 

  8. Yu. S. Akishev, A. A. Deryugin, N. N. Elkin, I. V. Kochetov, A. P. Napartovich, and N. I. Trushkin, Plasma Physics Rep. 20, 437 (1994).

    Google Scholar 

  9. R. H. Stark and K. H. Schoenbach, Appl. Phys. Lett. 74, 3770 (1999).

  10. C. O. Laux, L. Yu, D. M. Packan, R. J. Gessman, L. Pierrot, C. H. Kruger, and R. N. Zare, Ionization Mechanisms in Two-Temperature Air Plasmas, AIAA Paper # 99-3476, 30th Plasmadynamics and Lasers Conf. Norfolk, Virginia (June/July, 1999).

  11. U. Kogelschatz, B. Eliasson, and W. Egli, XXIII ICPIG Invited Papers, J. Phys. IV France, 7,C4-47 (1997).

    Google Scholar 

  12. U. Kogelschatz, Hakone Proc. Vol. 1, Greifswald, Germany, (2000).

    Google Scholar 

  13. R. Bartnikas, IEEE Trans. Elect. Insul. El-6, 63 (1971).

    Google Scholar 

  14. S. Kanazawa, M. Kogoma, T. Moriwaki, and S. J. Okazaki, J. Phys. D. Appl. Phys. 21, 863 (1988).

    Google Scholar 

  15. E. Monette, R. Bartnikas, G. Czeremuszkin et al., 14th Int. Symp. Plasma Chemistry, Prague, M. Hrabovsky, M. Konrad, and V. Kopecky, eds., 2, 991 (1999).

  16. N. Gherardi, E. Gat, G. Gouda et al., Hakone VI Proc. Cork, Ireland (1998) p. 118.

    Google Scholar 

  17. J. Tepper, M. Lindmayer, and J. Salge, Hakone VI Proc. Cork, Ireland (1998) p. 123.

    Google Scholar 

  18. T. C. Montie, K. Kelly-Wintenberg, and J. R. Roth. IEEE Trans. Plasma Sci. 28, 41 (2000).

    Google Scholar 

  19. J. R. Roth, P. P-.Y. Tsai, and C. Li, Steady-state, glow discharge plasma, U.S. Patent 5 387 842 (February 7, 1995).

  20. F. Massines, C. Mayoux, R. Messaoudi, A. Rabehi, and P. Segur, Gas Discharges and Their Applications, Swansea, W.T. Williams, ed., Vol. II (1992), p. 730.

    Google Scholar 

  21. S. Okazaki, M. Kogoma, M. Uehara, and Y. Kimura, J. Phys. D.: Appl. Phys. 26, 889 (1993).

    Google Scholar 

  22. E. E. Kunhardt, IEEE Trans. Plasma Sci. 28, 189 (2000).

    Google Scholar 

  23. J. W. Frame, D. J. Wheeler, T. A. De Temple et al., Appl. Phys. Lett. 71, 1165 (1997).

  24. J. Park, I. Henins, H. W. Herrmann, G. S. Selwyn, J. Y. Jeong, R. F. Hicks, D. Shim, and C.S. Chang, Appl. Phys. Lett. 76, 288 (2000).

    Google Scholar 

  25. H. Barankova and L. Bardos, Appl. Phys. Lett. 76, 285 (2000).

  26. M. Moisan and Z. Zakrzewski, J. Phys. D.: Appl. Phys. 24, 1025 (1991).

    Google Scholar 

  27. M. Moisan, G. Sauve, Z. Zakrzewski, and J. Hubert, Plasma Sources, Sci. Technol. 3, 584 (1994).

    Google Scholar 

  28. M. D. Calzada, M. Saez, and M. C. Garcia, J. Appl. Phys. 8,34 (2000).

  29. H. Song, J. M. Hong, J. J. Choi, and K. H. Lee, Hakone VII Proc. Vol. 2, Greifswald, Germany (2000) p. 486.

    Google Scholar 

  30. E. H. W. M. Smulders, B. E. J. M. van Heesch, and S. S. V. B. van Paasen, IEEE Trans. Plasma Sci. 26,1476 (1998).

    Google Scholar 

  31. Yu. S. Akishev, I. V. Kochetov, A. P. Napartovich et al., Plasma Physics Rep. 26, 157 (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Napartovich, A.P. Overview of Atmospheric Pressure Discharges Producing Nonthermal Plasma. Plasmas and Polymers 6, 1–14 (2001). https://doi.org/10.1023/A:1011313322430

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011313322430

Navigation