Skip to main content
Log in

Berry–Esseen bounds for von Mises and U-statistics

  • Published:
Lithuanian Mathematical Journal Aims and scope Submit manuscript

Abstract

Let X 1,... ,X n be i.i.d.\ random variables. An optimal Berry–Esseen bound is derived for U-statistics of order 2, that is, statistics of the form j> k H (X j , X k ), where H is a measurable, symmetric function such that E | H (X1, X2)| > ∞, assuming that the statistic is non-degenerate. The same is done for von Mises statistics, that is, statistics of the form j,k H (X j , X k ). As a corollary, the central limit theorem is derived under optimal moment conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. B. Alberink, A Berry-Esseen bound for U-statistics in the non-i.i.d. case, J. Theoret. Probab. (2000a) (to appear).

  2. I. B. Alberink, Berry-Esseen bounds for arbitrary statistics (2000b) (dissertation).

  3. I. B. Alberink and V. Bentkus, Lyapunov-type bounds for U-statistics, Theory Probab. Appl. (2000) (to appear).

  4. I. B. Alberink and V. Bentkus, Bounds for the concentration of asymptotically normal statistics, Acta Appl. Math., 58, 11–59 (1999).

    Google Scholar 

  5. V. Bentkus and F. Goötze, On minimal moment assumptions in Berry-Esseen theorems for U-statistics, Theory Probab. Appl., 40(3), 430–455 (1995).

    Google Scholar 

  6. V. Bentkus and F. Goötze, Optimal results of convergence in the CLT for quadratic forms, Ann. Probab., 24, 466–490 (1996).

    Google Scholar 

  7. V. Bentkus, F. Goötze, and R. Zitikis, Lower estimate for the convergence rate for U-statistics, Ann. Probab., 22, 1707–1714 (1994).

    Google Scholar 

  8. V. Bentkus, F. Goötze, V. Paulauskas, and A. Račkauskas, The accuracy of Gaussian approximation in Banach spaces, in: Limit Theorems of Probability Theory, Yu. V. Prokhorov and V. A. Statulevicčius (Eds.), Springer, Berlin (2000), pp. 25–111.

  9. V. Bentkus, F. Goötze, and W. R. van Zwet, An Edgeworth expansion for symmetric statistics, Ann. Statist., 25, 851–896 (1997).

    Google Scholar 

  10. P. Bickel, Edgeworth expansion in nonparametric statistics, Ann. Statist., 4, 108–156 (1974).

    Google Scholar 

  11. E. Bolthausen and F. Goötze, The rate of convergence for multivariate sampling statistics, Ann. Statist., 21, 1692–1710 (1993).

    Google Scholar 

  12. R. N. Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Expansions, Robert E. Krieger Publishing Co., Melbourne (1986).

    Google Scholar 

  13. Yu. V. Borovskikh, U-Statistics in Banach Spaces, VSP, Utrecht (1996).

    Google Scholar 

  14. Yu. V. Borovskikh, On normal approximations to U-statistics, Theory Probab. Appl. (2000) (to appear).

  15. Yu. V. Borovskikh and V. S. Korolyuk, Asymptotic Analysis of Distributions of Statistics [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  16. Yu. V. Borovskikh and V. S. Korolyuk, Approximation of nondegenerate U-statistics, Theory Probab. Appl., 30, 439–450 (1985).

    Google Scholar 

  17. Yu. V. Borovskikh and V. S. Korolyuk, Theory of U-statistics, Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  18. H. Callaert and P. Janssen, The Berry-Esseen theorem for U-statistics, Ann. Statist., 6, 417–421 (1978).

    Google Scholar 

  19. Y.-K. Chan and J. Wierman, On the Berry-Esseen theorem for U-statistics, Ann. Probab., 5, 136–139 (1977).

    Google Scholar 

  20. W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, 2nd ed., Wiley, New York (1971).

    Google Scholar 

  21. K. O. Friedrich, A Berry-Esseen bound for functions of independent random variables, Ann. Statist., 17, 170–183 (1989).

    Google Scholar 

  22. R. Helmers and W. R. van Zwet, The Berry-Esseen bound for U-statistics, in: Statistical Decision Theory and Related Topics III, Vol. 1, S. S. Gupta and J. O. Berger (Eds.), Academic Press, New York (1982), pp. 497–512.

    Google Scholar 

  23. W. Hoeffding, A class of statistics with asymptotically normal distributions, Ann. Math. Stat., 19, 293–325 (1948).

    Google Scholar 

  24. A. J. Lee, U-Statistics. Theory and Practice, Marcel Dekker, New York (1990).

    Google Scholar 

  25. V. V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Clarendon Press, Oxford (1995).

    Google Scholar 

  26. R. J. Serfling, Approximation Theorems of Mathematical Statistics, Wiley, New York (1980).

    Google Scholar 

  27. C. P. Shapiro and L. Hubert, Asymptotic normality of permutation statistics derived from weighted sums of bivariate functions, Ann. Statist., 7, 788–794 (1979).

    Google Scholar 

  28. W. R. van Zwet, A Berry-Esseen bound for symmetric statistics, Z. Wahrsch. verw. Gebiete, 66, 425–440 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alberink, I.B., Bentkus, V. Berry–Esseen bounds for von Mises and U-statistics. Lithuanian Mathematical Journal 41, 1–16 (2001). https://doi.org/10.1023/A:1011066719481

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011066719481

Navigation