Abstract
The origin of Jupiter and the Galilean satellite system is examinedin the light of the new data that has been obtained by the NASA Galileo Project. In particular, special attention is given to a theory of satellite origin which was put forward at the start of the Galileo Mission and on the basis of which several predictions have now been proven successful (Prentice, 1996a–c). These predictions concern the chemical composition of Jupiter's atmosphere and the physical structure of the satellites. According to the proposed theory of satellite origin, each of the Galilean satellites formed by chemical condensation and gravitational accumulation of solid grains within a concentricfamily of orbiting gas rings. These rings were cast off equatorially by the rotating proto-Jovian cloud (PJC) which contracted gravitationally to form Jupiter some 4\(\frac{1}{2}\) billion years ago. The PJC formed from the gas and grains left over from the gas ring that had been shed at Jupiter's orbit by the contracting proto-solar cloud (PSC). Supersonic turbulentconvection provides the means for shedding discrete gas rings.The temperatures Tn of the system of gas rings shed by the PSCand PJC vary with their respective mean orbital radii Rn (n = 0, 1, 2, Ϊ ) according as Tn ∝ Rn -0.9. If the planet Mercury condenses at 1640 K, so accounting for the high density ofthat planet via a process of chemical fractionation between iron and silicates, then Tn at Jupiter's orbit is 158 K. Only 35% of the water vapour condenses out. Thus fractionation between rock and ice, together with an enhancement in the abundance of solids relative to gas which takes place through gravitational sedimentation of solids onto the mean orbit of the gas ring, ensures nearly equal proportions of rock and ice in each of Ganymede and Callisto. Io and Europa condense above the H2O ice point and consist solely of hydrated rock (h-rock). The Ganymedan condensate consists of h-rock and H2O ice. For Callisto, NH3 ice makes up ∼5% of the condensate mass next to h-rock (∼50%) and H2O ice (∼45%).
Detailed thermal and structural models for each of Europa, Ganymedeand Callisto are constructed on the basis of the above initial bulk chemicalcompositions. For Europa (E), a predicted 2-zone model consisting of a dehydrated rock core of mass 0.912ME and a 150 km thick frozen mantle of salty H2O yields a moment-of-inertiacoefficient which matches the Galileo Orbiter gravity measurement. For Ganymede (G), a 3-zone model possessing an inner core of solid FeS and mass ∼0.116MG, and an outer H2O ice mantle of mass ∼0.502MG is needed to explain the gravity data.Ganymede's native magnetic field was formed by thermoremanent magnetization of Fe3O4. A new Callisto (C) model is proposed consisting of a core of mass 0.826MC containing a uniform mixture of h-rock (60% by mass) and H2O and NH3 ices, and capped by a mantle of pure ice. This model may have the capacity to yield a thin layer of liquid NH3ċ2H2O at the core boundary, in line with Galileo's discovery of an induced magnetic field
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Avoid common mistakes on your manuscript.
References
Ahmad, N. and Phillips, W. A.: 1987, ‘Thermal Conductivity of Ice and Ice Clathrate’, Solid State Commun. 63, 167–171.
Anders, E. and Grevesse, N.: 1989, ‘Abundances of the Elements: Meteoritic and Solar’, Geochim. Cosmochim. Acta 53, 197–214.
Anderson, J. D., Colombo, G., Esposito, P. B., Lau, E. L., and Trager, G. B.: 1987, ‘The Mass and Gravity Field of Mercury’, Icarus 71, 337–349.
Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G., and Moore, W. B.: 1996a, ‘Gravitational Constraints on the Internal Structure of Ganymede’, Nature 384, 541–543.
Anderson, J. D., Sjogren, W. L., and Schubert, G.: 1996b, ‘Galileo Gravity Results and the Internal Structure of Io’, Science 272, 709–712.
Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G., and Moore, W. B.: 1997a, ‘Gravitational Evidence for an Undifferentiated Callisto’, Nature 387, 264–266.
Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G., and Moore, W. B.: 1997b, ‘Europa's Differentiated Internal Structure: Inferences from Two Galileo Encounters’, Science 276, 1236–1239.
Anderson, J. D., Schubert, G. Jacobson, R. A., Lau, E. L., Moore, W. B., and Sjogren, W. L.: 1998a, ‘Distribution of Rock, Metals and Ices in Callisto’, Science 280, 1573–1576.
Anderson, J. D., Schubert, G., Jacobson, R. A., Lau, E. L., Moore, W. B., and Sjogren, W. L.: 1998b, ‘Europa's Differentiated Internal Structure: Inferences from Four Galileo Encounters’, Science 281, 2019–2022.
Bridgman, P. W.: 1912, ‘Water, in the Liquid and Five Solid Forms, under Pressure’, Proc. Amer. Acad. Arts Sci. 47, 441–558.
Bridgman, P. W.: 1935, ‘The Pressure-Volume-Temperature Relations of the Liquid, and the Phase Diagram of Heavy Water’, J. Chem. Phys. 3, 597–605.
Bridgman, P.W.: 1937, ‘The Phase Diagram ofWater to 45,000 kg/cm2’, J. Chem. Phys. 5, 964–966.
Brown, A. J. and Whalley, E.: 1966, ‘Preliminary Investigation of the Phase Boundaries between Ice VI and VII and Ice VI and VIII’, J. Chem. Phys. 45, 4360–4361.
Campbell, J. K. and Synott, S. P.: 1985, ‘Gravity Field of the Jovian System from Pioneer and Voyager Tracking Data’, Astron. J. 90, 364–372.
Carr, M. J. and 21 colleagues: 1998, ‘Evidence for a Subsurface Ocean on Europa’, Nature 391, 363–368.
Cohen, E. R. and Taylor, B. N.: 1987, ‘The 1986 Adjustment to the Fundamental Physical Constants’, Rev. Mod. Phys. 59, 1121–1148.
Consolmagno, G. J. and Lewis, J. S.: 1978, ‘The Evolution of Icy Satellite Interiors and Surfaces’, Icarus 34, 280-293.
Crary, F. J. and Bagenal, F.: 1996, ‘Remanent Magnetism and Ganymede's Internal Magnetic Field’, Bull. Amer. Astron. Soc. 28, 1075.
Crary, F. J. and Bagenal F.: 1998, ‘Remanent Magnetism and the Interior Structure of Ganymede’, J. Geophys. Res. 103, 25757–25773.
Croft, S. K., Lunine, J. L., and Kargel, J.: 1988, ‘Equation of State of Ammonia-Water Liquid: Derivation and Planetological Applications’, Icarus 73, 279–293.
Dantl, G.: 1968, ‘Die elastichen Moduln von Eis-Einkristallen', Phys. Condens. Mater. 7, 390–397.
Davies, M. E., Abalakin, V. K., Brahic, A., Bursa, M., Chovitz, B. H., Lieske, J. H., Siedelmann, P. K., Sinclair, A. T., and Tjuflin, Y. S.: 1992, ‘Report of the IAU/IAG/COSPARWorking Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1991’, Celest. Mech. Dyn. Astron. 53, 377–397.
Davies, M. E., Colvin, T. R., Oberst, J., Zeitler, W., Schuster, P., Neukum, G., McEwen, A. S., Phillips, C. B., Thomas, P. C., Veverka, J., Belton, M. J. S., and Schubert, G.: 1998, ‘The Control Networks of the Galilean Satellites and Implications for Global Shape’, Icarus 135, 372–376.
Dillard, D. S. and Timmerhaus, K. D.: 1966, ‘Low Temperature Thermal Conductivity of Solidified H2O and D2O’, Pure Appl. Cryogen 4, 35–44.
Dunlop, D. J. and Özdemir, Ö.: 1997, Rock Magnetism: Fundamentals and Frontiers, Cambridge University Press, Cambridge, p. 5.
Dyt, C. P.: 1997, Numerical Simulation of Supersonic Turbulent Convection and its Relation to the Modern Laplacian Theory of Solar System Origin, Ph.D. Thesis, Monash University, Australia.
Dyt, C. P. and Prentice, A. J. R.: 1998, ‘A Numerical Simulation of Supersonic Thermal Convection’, Mon. Not. Roy. Astron. Soc. 296, 56–65.
Ellsworth, K. and Schubert, G.: 1983, ‘Saturn's Icy Satellites: Thermal and Structural Models’, Icarus 54, 490–510.
Fegley, Jr., B.: 1988, ‘Cosmochemical Trends of Volatile Elements in the Solar System’, in J. A. Nuth and P. Sylvester (eds.), Workshop on the Origins of Solar Systems, LPI Technical Report 88-04, Lunar and Planetary Institute, Houston, TX, pp. 51–60.
Fei, Y. and Mao, H.-K.: 1993, ‘Static Compression of Mg(OH)2 to 78 Gpa at High Temperature and Constraints on the Equation of State of Fluid H2O’, J. Geophys. Res. 98, 11875–11884.
Friedson, A. J. and Stevenson, D. J.: 1983, ‘Viscosity of Rock-Ice Mixtures and Applications to the Evolution of Icy Satellites’, Icarus 56, 1–14.
Giaque, W. F. and Stout J. W.: 1936, ‘The Entropy of Water and the Third Law of Thermodynamics. The Heat Capacity of Ice from 15 to 273 K’, J. Amer. Chem. Soc. 58, 1144–1150.
Ginnings, D. C. and Corruccini, R. J.: 1947, ‘An Improved Ice Calorimeter – The Determination of its Calibration Factor and the Density of Ice at 0 °C’, J. Res. Natl. Bur. Stand. 38, 583–591.
Graner, F. and Dubralle, B.: 1994, ‘Titius–Bode Laws in the Solar System’, Astron. Astrophys. 282, 262–268.
Grevesse, N., Noels, A., and Sauval, A. J.: 1992, ‘Photospheric Abundances’, in Proceedings of the First SOHO Workshop, ESA SP-348, pp. 305–308.
Grossman, L.: 1972, ‘Condensation in the Primitive Solar Nebula’, Geochim. Cosmochim. Acta 36, 597–619.
Hobbs, P. V.: 1974, Ice Physics, Oxford University Press, London.
Hogenboom, D. L., Kargel, J. S., Consolmagno, G. J., Holden, T. C., Lee, L., and Buyyounouski, M.: 1997, ‘The Ammonia-Water System and the Chemical Differentiation of Icy Satellites', Icarus 128, 171–180.
Hourigan, K.: 1977, ‘Numerical Experiments on Planetesimal Aggregation during the Formation of the Solar System’, Proc. Astron. Soc. Aust. 3, 169–171.
Jeans, J. H.: 1928, Astronomy and Cosmogony, Cambridge University Press, Cambridge, 389 pp.
Kamb, B.: 1964, ‘Ice II: A Proton-Ordered Form of Ice’, Acta Cryst. 17, 1437–1449.
Kamb, B.: 1965, ‘Structure of Ice VI’, Science 150, 205–209.
Kargel, J. S.: 1992, ‘Ammonia-Water Volcanism on Icy Satellites: Phase Relations at 1 Atmosphere’, Icarus 100, 556–574.
Khurana, K. K., Kivelson, M. G., Russell, C. T., Walker, R. J., and Southwood, D. J.: 1997, ‘Absence of an Internal Magnetic Field of Callisto’, Nature 387, 262–264.
Khurana, K. K, Kivelson, M. G., Stevenson, D. J., Schubert, G., Russell, C. T., Walker, R. J., and Polanskey, C.: 1998, ‘Induced Magnetic Fields as Evidence for Subsurface Oceans in Europa and Callisto’, Nature 395, 777–780.
Kingery, W. D., Franck, J., Coble, R. L., and Vasilos, T.: 1954, ‘Thermal Conductivity: X, Data for Several Pure Oxide Materials Corrected to Zero Porosity’, J. Amer. Ceram. Soc. 37, 107–110.
Kivelson, M. G., Khurana, K. K., Joy, S., Russell, C. T., Southwood, D. J., Walker, R. J., and Polanskey, C.: 1997, ‘Europa's Magnetic Signature: Report from Galileo's Pass on 19 December 1996’, Science 276, 1239–1241.
Kivelson, M. G., Khurana, K. K., Russell, C. T., Walker, R. J., Warnecke, J., Coroniti, F. V., Polanskey, C., Southwood, D. J., and Schubert, G.: 1996, ‘Discovery of Ganymede's Magnetic Field by the Galileo Spacecraft’, Nature 384, 537–541.
Klinger, J. and Neumaïer, K.: 1969, ‘Conductibilité thermique de la glace’, C.R. Acad. Sci. Paris 269, Series B, 945–948.
Krupskii, I. N., Manzhely, V. G., and Koloskova, L. A.: 1968, ‘Thermal Conductivity of Solid Ammonia’, Physica Status Solidi 27, 263–268.
Kusaba, K., Syona, Y., Kikegawa, T., and Shimomura, O.: 1997, ‘Structure of FeS under High Pressure’, J. Phys. Chem. Solids 58, 241–246.
Landholt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series: 1975 (K.-H. Hellwege ed. in chief), Crystal Structure Data of Inorganic Compounds, Springer-Verlag, Berlin, Group III, Vol. 7, Part B, pp. 5–7.
Laplace, P. S. de: 1796, Exposition du Système du Monde, Courcier, Paris, pp. 387–397.
Larimer, J. W.: 1967, ‘Chemical Fractionation in Meteorites – I. Condensation of the Elements’, Geochim. Cosmochim. Acta 31, 1215–1238.
Leadbetter, A. J.: 1965, ‘The Thermodynamic and Vibrational Properties of H2O Ice and D2O Ice’, Proc. Roy. Soc. (Lond.) A287, 403–425.
Lewis, J. S.: 1971, ‘Satellites of the Outer Planets’, Science 172, 1127–1128.
Lewis, J. S.: 1972, ‘Metal/Silicate Fractionation in the Solar System’, Earth Planet. Sci. Lett. 15, 286–290.
Lewis, J. S. and Prinn, R. G.: 1980, ‘Kinetic Inhibition of CO and N2 Reduction in the Solar Nebula’, Astrophys. J. 238, 357–364.
Lunine, J. L. and Stevenson, D. J.: 1982, ‘Formation of the Galilean Satellites in a Gaseous Nebula’, Icarus 52, 14–39.
Lupo, M. J. and Lewis, J. S.: 1979, ‘Mass-Radius Relationships in Icy Satellites,’ Icarus 40, 157–170.
Malhotra, R.: 1991, ‘Tidal Origin of the Laplace Resonance and the Resurfacing of Ganymede’, Icarus 94, 399–412.
Malhotra, R.: 1997, ‘Galileo Raises New Questions about Ganymede’, Phys. World 10, 21–22.
McKinnon, W. B.: 1997, ‘Mystery of Callisto: Is it Undifferentiated?’, Icarus 130, 540–543.
Mizuno, H.: 1980, ‘Formation of the Giant Planets’, Prog. Theor. Phys. 64, 544–557.
Mueller, S. and McKinnon, W. B.: 1988, ‘Three-Layered Models of Ganymede and Callisto: Compositions, Structures, and Aspects of Evolution’, Icarus 76, 437–464.
Niemann, H. B., Atreya, S. K., Carignan, G. R., Donahue, T. M, Haberman, J. A., Harpold, D. N., Hartle, R. E., Hunten, D. M., Kasprzak, W. T., Mahaffy, P. R., Owen, T. C., Spencer, N. W., and Way, S. H.: 1996, ‘The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere’, Science 272, 846–849.
Niemann, H. B., Atreya, S. K., Carignan, G. R., Donahue, T. M., Haberman, J. A., Harpold, D. N., Hartle, R. E., Hunten, D. M., Kasprzak, W. T., Mahaffy, P. R., Owen, T. C., and Way, S. H.: 1998, ‘The Composition of the Jovian Atmosphere as Determined by the Galileo Probe Mass Spectrometer’, J. Geophys. Res. 103, 22,831–22,845.
Overstreet, R. and Giaque, W. F.: 1937, ‘Ammonia. The Heat Capacity and Vapour Pressure of Solid and Liquids’, Heat of Vaporization. The Entropy Values from and Spectroscopic Data, J. Amer. Chem. Soc. 59, 254–259.
Peale, S. J., Cassen, P., and Reynolds, R. T.: 1979, ‘Melting of Io by Tidal Dissipation’, Science 203, 892–894.
Pollack, J. B. and Reynolds, R. T.: 1974, ‘Implications of Jupiter's Early Contraction History for the Composition of the Galilean Satellites’, Icarus 21, 248–253.
Prentice, A. J. R.: 1973, ‘On Turbulent Stress and the Structure of Young Convective Stars’, Astron. Astrophys. 27, 237–248.
Prentice, A. J. R.: 1978a, ‘Origin of the Solar System: Gravitational Contraction of the Turbulent Protosun and the Shedding of a Concentric System of Gaseous Laplacian Rings’, Moon Planets 19, 341–398.
Prentice, A. J. R.: 1978b, ‘Towards a Modern Laplacian Theory for the Formation of the Solar System’, in S. F. Dermott (ed.), The Origin of the Solar System, John Wiley, New York, pp. 111–161.
Prentice, A. J. R.: 1980, ‘Accretion of Planetesimals within a Gaseous Ring’, Aust. J. Phys. 33, 623–637.
Prentice, A. J. R.: 1990, ‘Iron/silicate Fractionation and the Formation of the Inner Planets’, Meteoritics 25, 399–400.
Prentice, A. J. R.: 1991, ‘Chemical Fractionation in Gas Rings and the Formation of the Solar System’, Proc. Astron. Soc. Aust. 9, 321–323.
Prentice, A. J. R.: 1993, ‘The Origin and Composition of Pluto and Charon: Chemically Uniform Models’, Proc. Astron. Soc. Aust. 10, 189–195.
Prentice, A. J. R.: 1995, ‘Origin and Bulk Chemical Composition of the Terrestrial Planets’, Eos Trans. AGU 76, F332.
Prentice, A. J. R.: 1996a, ‘Origin and Bulk Chemical Composition of the Galilean Satellites and the Primitive Atmosphere of Jupiter: A Pre-Galileo Analysis’, Earth Moon Planets 73, 237–258.
Prentice, A. J. R.: 1996b, ‘Internal Structure and Bulk Chemical Composition of Io: A Pre-Galileo Prediction’, Phys. Lett. A213, 253–258.
Prentice, A. J. R.: 1996c, ‘Origin, Thermophysical Structure and Magnetic Properties of the Icy Galilean Satellites’, Eos Trans. AGU 77, F172.
Prentice, A. J. R.: 1999, ‘Origin and Bulk Chemical Composition of the Galilean Satellites of Jupiter and the Inner Planets’, in 30th Lunar Planet Science Conference, LPI Contribution No. 964, Houston, TX.
Prentice, A. J. R. and Freeman, J. C.: 1999, ‘The Origin of Callisto and its Subsurface Electrolytic Ocean’, Eos Trans. AGU 80(46), F607.
Prentice, A. J. R. and ter Haar, D.: 1979, ‘Origin of the Jovian Ring and the Galilean satellites’, Nature 280, 300–302.
Pringle, J. E.: 1981, ‘Accretion Disks in Astrophysics’, Annu. Rev. Astron. Astrophys. 19, 137–162.
Proctor, T. M.: 1966, ‘Low-Temperature Speed of Sound in Single-Crystal Ice’, J. Acoust. Soc. Amer. 39, 972–979.
Ransford, G. A., Finnerty, A. A., and Collerson, K. D.: 1981, ‘Europa's Petrological Thermal History’, Nature 289, 21–24.
Robie, R. A., Hemingway, B. S., and Fisher, J. P.: 1978, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures, U.S. Geol. Surv. Bull. 1452, U.S. Gov. Printing Office, Washington.
Ross, R. G. and Kargel, J. S.: 1988, ‘Thermal Conductivity of Solar System Ices, with Special Reference to Martian Polar Caps’ in B. Schmidt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publishers, Dordrecht, pp. 33–62.
Ross, R. G., Anderson, P., and Bäckström, G.: 1977, ‘Thermal Conductivity of Nine Solid Phases of H2O’, High Temperatures-High Pressures 9, 87–96.
Schatzman, E.: 1949, ‘On Certain Paths of Stellar Evolution. I. Preliminary Remarks’, Bull. Acad. Roy. Belgique 3, 1141–1152.
Schubert, G., Cassen, P., and Young, R. E.: 1979, ‘Subsolidus Convective Cooling Histories of Terrestrial Planets’, Icarus 38, 192–211.
Schubert, G., Zhang, K., Kivelson, M. G., and Anderson, J. D.: 1996, ‘The Magnetic Field and Internal Structure of Ganymede’, Nature 384, 544–545.
Showman, A. P. and Ingersoll, A. P.: 1998, ‘Interpretation of Galileo Probe Data and Implications for Jupiter's Dry Downdrafts’, Icarus 132, 205–220.
Slack, G. A.: 1962, ‘Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 crystals from 3 to 300 K’, Phys. Rev. 126, 427–441.
Standish, E. M.: 1990, ‘The Observational Basis for JPL's DE200, the Planetary Ephemerides of the Astronomical Almanac’, Astron. Astrophys. 233, 252–271.
Stewart, J. W.: 1960, ‘Compression and Phase Transitions of Solid NH3, SiF4, H2S and CF4’, J. Chem. Phys. 33, 128–133.
ter Haar, D.: 1949, ‘Stellar Rotation and Age’, Astrophys. J. 110, 321–328.
ter Haar, D.: 1967, ‘On the Origin of the Solar System’, Annu. Rev. Astron. Astrophys. 5, 267–278.
Thomas, P. C., Davies, M. E., Colvin, T. R., Oberst, J., Schuster, P., Neukum, G., Carr, M. H., McEwen, A. S., Schubert, G., Belton, M. J. S., and the Galileo Imaging Team: 1998, ‘The Shape of Io from Galileo Limb Measurements’, Icarus 135, 175–180.
Touloukian, Y. S. and Buyco, E. H.: 1970, Thermophysical Properties of Matter, Volume 5, Specific Heat: Nonmetallic Solids, IFI/Plenum, New York, Washington.
Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G.: 1970a, Thermophysical Properties of Matter, Volume 2, Thermal Conductivity: Nonmetallic Solids, IFI/Plenum, New York, Washington.
Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Lee, T. Y. R.: 1970b, Thermophysical Properties of Matter, Volume 13, Thermal Expansion: Nonmetallic Solids, IFI/Plenum, New York, Washington.
Turcotte, D. L. and Schubert, G.: 1982, Geodynamics: Applications of Continuum Physics to Geological Problems, John Wiley, New York, 140 pp.
von Zahn, U., Hunten, D. M., and Lehmacher, G.: 1998, ‘Helium in Jupiter's Atmosphere: Results from the Galileo Probe Helium Interferometer Experiment’, J. Geophys. Res. 103, 22,815–22,829.
Wasson, J. T.: 1985, Meteorites: Their Record of Early Solar-System History, W. H. Freeman, New York, 187 pp.
Whalley, E.: 1969, ‘Structure Problems in Ice’, in N. Riehl, B. Bullemer, and H. Engelhardt (eds.), Physics of Ice, Plenum Press, New York, pp. 19–43.
Whipple, F. L.: 1968, Earth, Moon, and Planets, 3rd edn., Harvard University Press, Cambridge, MA.
Zhang, C. Z.: 2000, ‘A Study of Internal StructureModels and Dynamical Parameters of Ganymede’, Earth Moon Planets 84, 115–121.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Prentice, A.J.R. Origin, Bulk Chemical Composition And Physical Structure Of The Galilean Satellites Of Jupiter: A Post-Galileo Analysis. Earth, Moon, and Planets 87, 11–55 (1999). https://doi.org/10.1023/A:1010692812892
Issue Date:
DOI: https://doi.org/10.1023/A:1010692812892