Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Earth, Moon, and Planets
  3. Article

Origin, Bulk Chemical Composition And Physical Structure Of The Galilean Satellites Of Jupiter: A Post-Galileo Analysis

  • Published: July 1999
  • Volume 87, pages 11–55, (1999)
  • Cite this article
Download PDF
Earth, Moon, and Planets Aims and scope Submit manuscript
Origin, Bulk Chemical Composition And Physical Structure Of The Galilean Satellites Of Jupiter: A Post-Galileo Analysis
Download PDF
  • A. J. R. Prentice1 
  • 254 Accesses

  • 3 Altmetric

  • Explore all metrics

Abstract

The origin of Jupiter and the Galilean satellite system is examinedin the light of the new data that has been obtained by the NASA Galileo Project. In particular, special attention is given to a theory of satellite origin which was put forward at the start of the Galileo Mission and on the basis of which several predictions have now been proven successful (Prentice, 1996a–c). These predictions concern the chemical composition of Jupiter's atmosphere and the physical structure of the satellites. According to the proposed theory of satellite origin, each of the Galilean satellites formed by chemical condensation and gravitational accumulation of solid grains within a concentricfamily of orbiting gas rings. These rings were cast off equatorially by the rotating proto-Jovian cloud (PJC) which contracted gravitationally to form Jupiter some 4\(\frac{1}{2}\) billion years ago. The PJC formed from the gas and grains left over from the gas ring that had been shed at Jupiter's orbit by the contracting proto-solar cloud (PSC). Supersonic turbulentconvection provides the means for shedding discrete gas rings.The temperatures Tn of the system of gas rings shed by the PSCand PJC vary with their respective mean orbital radii Rn (n = 0, 1, 2, Ϊ ) according as Tn ∝ Rn -0.9. If the planet Mercury condenses at 1640 K, so accounting for the high density ofthat planet via a process of chemical fractionation between iron and silicates, then Tn at Jupiter's orbit is 158 K. Only 35% of the water vapour condenses out. Thus fractionation between rock and ice, together with an enhancement in the abundance of solids relative to gas which takes place through gravitational sedimentation of solids onto the mean orbit of the gas ring, ensures nearly equal proportions of rock and ice in each of Ganymede and Callisto. Io and Europa condense above the H2O ice point and consist solely of hydrated rock (h-rock). The Ganymedan condensate consists of h-rock and H2O ice. For Callisto, NH3 ice makes up ∼5% of the condensate mass next to h-rock (∼50%) and H2O ice (∼45%).

Detailed thermal and structural models for each of Europa, Ganymedeand Callisto are constructed on the basis of the above initial bulk chemicalcompositions. For Europa (E), a predicted 2-zone model consisting of a dehydrated rock core of mass 0.912ME and a 150 km thick frozen mantle of salty H2O yields a moment-of-inertiacoefficient which matches the Galileo Orbiter gravity measurement. For Ganymede (G), a 3-zone model possessing an inner core of solid FeS and mass ∼0.116MG, and an outer H2O ice mantle of mass ∼0.502MG is needed to explain the gravity data.Ganymede's native magnetic field was formed by thermoremanent magnetization of Fe3O4. A new Callisto (C) model is proposed consisting of a core of mass 0.826MC containing a uniform mixture of h-rock (60% by mass) and H2O and NH3 ices, and capped by a mantle of pure ice. This model may have the capacity to yield a thin layer of liquid NH3ċ2H2O at the core boundary, in line with Galileo's discovery of an induced magnetic field

Article PDF

Download to read the full article text

Similar content being viewed by others

Setting the Stage: Formation and Earliest Evolution of Io

Chapter © 2023

Genesis of volatile components at Saturn’s regular satellites. Origin of Titan’s atmosphere

Article 06 January 2016

Deep Atmosphere Composition, Structure, Origin, and Exploration, with Particular Focus on Critical in situ Science at the Icy Giants

Article 12 February 2020

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Early Solar System
  • Planetary Interior
  • Planet Formation
  • Planetary Science
  • Rings and Moons
  • Space Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Ahmad, N. and Phillips, W. A.: 1987, ‘Thermal Conductivity of Ice and Ice Clathrate’, Solid State Commun. 63, 167–171.

    Article  ADS  Google Scholar 

  • Anders, E. and Grevesse, N.: 1989, ‘Abundances of the Elements: Meteoritic and Solar’, Geochim. Cosmochim. Acta 53, 197–214.

    Article  ADS  Google Scholar 

  • Anderson, J. D., Colombo, G., Esposito, P. B., Lau, E. L., and Trager, G. B.: 1987, ‘The Mass and Gravity Field of Mercury’, Icarus 71, 337–349.

    Article  ADS  Google Scholar 

  • Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G., and Moore, W. B.: 1996a, ‘Gravitational Constraints on the Internal Structure of Ganymede’, Nature 384, 541–543.

    Article  ADS  Google Scholar 

  • Anderson, J. D., Sjogren, W. L., and Schubert, G.: 1996b, ‘Galileo Gravity Results and the Internal Structure of Io’, Science 272, 709–712.

    ADS  Google Scholar 

  • Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G., and Moore, W. B.: 1997a, ‘Gravitational Evidence for an Undifferentiated Callisto’, Nature 387, 264–266.

    Article  ADS  Google Scholar 

  • Anderson, J. D., Lau, E. L., Sjogren, W. L., Schubert, G., and Moore, W. B.: 1997b, ‘Europa's Differentiated Internal Structure: Inferences from Two Galileo Encounters’, Science 276, 1236–1239.

    Article  ADS  Google Scholar 

  • Anderson, J. D., Schubert, G. Jacobson, R. A., Lau, E. L., Moore, W. B., and Sjogren, W. L.: 1998a, ‘Distribution of Rock, Metals and Ices in Callisto’, Science 280, 1573–1576.

    Article  ADS  Google Scholar 

  • Anderson, J. D., Schubert, G., Jacobson, R. A., Lau, E. L., Moore, W. B., and Sjogren, W. L.: 1998b, ‘Europa's Differentiated Internal Structure: Inferences from Four Galileo Encounters’, Science 281, 2019–2022.

    Article  ADS  Google Scholar 

  • Bridgman, P. W.: 1912, ‘Water, in the Liquid and Five Solid Forms, under Pressure’, Proc. Amer. Acad. Arts Sci. 47, 441–558.

    Google Scholar 

  • Bridgman, P. W.: 1935, ‘The Pressure-Volume-Temperature Relations of the Liquid, and the Phase Diagram of Heavy Water’, J. Chem. Phys. 3, 597–605.

    Article  ADS  Google Scholar 

  • Bridgman, P.W.: 1937, ‘The Phase Diagram ofWater to 45,000 kg/cm2’, J. Chem. Phys. 5, 964–966.

    Article  ADS  Google Scholar 

  • Brown, A. J. and Whalley, E.: 1966, ‘Preliminary Investigation of the Phase Boundaries between Ice VI and VII and Ice VI and VIII’, J. Chem. Phys. 45, 4360–4361.

    Article  ADS  Google Scholar 

  • Campbell, J. K. and Synott, S. P.: 1985, ‘Gravity Field of the Jovian System from Pioneer and Voyager Tracking Data’, Astron. J. 90, 364–372.

    Article  ADS  Google Scholar 

  • Carr, M. J. and 21 colleagues: 1998, ‘Evidence for a Subsurface Ocean on Europa’, Nature 391, 363–368.

    Article  ADS  Google Scholar 

  • Cohen, E. R. and Taylor, B. N.: 1987, ‘The 1986 Adjustment to the Fundamental Physical Constants’, Rev. Mod. Phys. 59, 1121–1148.

    Article  ADS  Google Scholar 

  • Consolmagno, G. J. and Lewis, J. S.: 1978, ‘The Evolution of Icy Satellite Interiors and Surfaces’, Icarus 34, 280-293.

    Article  ADS  Google Scholar 

  • Crary, F. J. and Bagenal, F.: 1996, ‘Remanent Magnetism and Ganymede's Internal Magnetic Field’, Bull. Amer. Astron. Soc. 28, 1075.

    ADS  Google Scholar 

  • Crary, F. J. and Bagenal F.: 1998, ‘Remanent Magnetism and the Interior Structure of Ganymede’, J. Geophys. Res. 103, 25757–25773.

    Article  ADS  Google Scholar 

  • Croft, S. K., Lunine, J. L., and Kargel, J.: 1988, ‘Equation of State of Ammonia-Water Liquid: Derivation and Planetological Applications’, Icarus 73, 279–293.

    Article  ADS  Google Scholar 

  • Dantl, G.: 1968, ‘Die elastichen Moduln von Eis-Einkristallen', Phys. Condens. Mater. 7, 390–397.

    Google Scholar 

  • Davies, M. E., Abalakin, V. K., Brahic, A., Bursa, M., Chovitz, B. H., Lieske, J. H., Siedelmann, P. K., Sinclair, A. T., and Tjuflin, Y. S.: 1992, ‘Report of the IAU/IAG/COSPARWorking Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1991’, Celest. Mech. Dyn. Astron. 53, 377–397.

    Article  ADS  Google Scholar 

  • Davies, M. E., Colvin, T. R., Oberst, J., Zeitler, W., Schuster, P., Neukum, G., McEwen, A. S., Phillips, C. B., Thomas, P. C., Veverka, J., Belton, M. J. S., and Schubert, G.: 1998, ‘The Control Networks of the Galilean Satellites and Implications for Global Shape’, Icarus 135, 372–376.

    Article  ADS  Google Scholar 

  • Dillard, D. S. and Timmerhaus, K. D.: 1966, ‘Low Temperature Thermal Conductivity of Solidified H2O and D2O’, Pure Appl. Cryogen 4, 35–44.

    Google Scholar 

  • Dunlop, D. J. and Özdemir, Ö.: 1997, Rock Magnetism: Fundamentals and Frontiers, Cambridge University Press, Cambridge, p. 5.

    Google Scholar 

  • Dyt, C. P.: 1997, Numerical Simulation of Supersonic Turbulent Convection and its Relation to the Modern Laplacian Theory of Solar System Origin, Ph.D. Thesis, Monash University, Australia.

    Google Scholar 

  • Dyt, C. P. and Prentice, A. J. R.: 1998, ‘A Numerical Simulation of Supersonic Thermal Convection’, Mon. Not. Roy. Astron. Soc. 296, 56–65.

    Article  ADS  Google Scholar 

  • Ellsworth, K. and Schubert, G.: 1983, ‘Saturn's Icy Satellites: Thermal and Structural Models’, Icarus 54, 490–510.

    Article  ADS  Google Scholar 

  • Fegley, Jr., B.: 1988, ‘Cosmochemical Trends of Volatile Elements in the Solar System’, in J. A. Nuth and P. Sylvester (eds.), Workshop on the Origins of Solar Systems, LPI Technical Report 88-04, Lunar and Planetary Institute, Houston, TX, pp. 51–60.

    Google Scholar 

  • Fei, Y. and Mao, H.-K.: 1993, ‘Static Compression of Mg(OH)2 to 78 Gpa at High Temperature and Constraints on the Equation of State of Fluid H2O’, J. Geophys. Res. 98, 11875–11884.

    Article  ADS  Google Scholar 

  • Friedson, A. J. and Stevenson, D. J.: 1983, ‘Viscosity of Rock-Ice Mixtures and Applications to the Evolution of Icy Satellites’, Icarus 56, 1–14.

    Article  ADS  Google Scholar 

  • Giaque, W. F. and Stout J. W.: 1936, ‘The Entropy of Water and the Third Law of Thermodynamics. The Heat Capacity of Ice from 15 to 273 K’, J. Amer. Chem. Soc. 58, 1144–1150.

    Article  ADS  Google Scholar 

  • Ginnings, D. C. and Corruccini, R. J.: 1947, ‘An Improved Ice Calorimeter – The Determination of its Calibration Factor and the Density of Ice at 0 °C’, J. Res. Natl. Bur. Stand. 38, 583–591.

    Google Scholar 

  • Graner, F. and Dubralle, B.: 1994, ‘Titius–Bode Laws in the Solar System’, Astron. Astrophys. 282, 262–268.

    ADS  Google Scholar 

  • Grevesse, N., Noels, A., and Sauval, A. J.: 1992, ‘Photospheric Abundances’, in Proceedings of the First SOHO Workshop, ESA SP-348, pp. 305–308.

  • Grossman, L.: 1972, ‘Condensation in the Primitive Solar Nebula’, Geochim. Cosmochim. Acta 36, 597–619.

    Article  ADS  Google Scholar 

  • Hobbs, P. V.: 1974, Ice Physics, Oxford University Press, London.

    Google Scholar 

  • Hogenboom, D. L., Kargel, J. S., Consolmagno, G. J., Holden, T. C., Lee, L., and Buyyounouski, M.: 1997, ‘The Ammonia-Water System and the Chemical Differentiation of Icy Satellites', Icarus 128, 171–180.

    Article  ADS  Google Scholar 

  • Hourigan, K.: 1977, ‘Numerical Experiments on Planetesimal Aggregation during the Formation of the Solar System’, Proc. Astron. Soc. Aust. 3, 169–171.

    ADS  Google Scholar 

  • Jeans, J. H.: 1928, Astronomy and Cosmogony, Cambridge University Press, Cambridge, 389 pp.

    MATH  Google Scholar 

  • Kamb, B.: 1964, ‘Ice II: A Proton-Ordered Form of Ice’, Acta Cryst. 17, 1437–1449.

    Article  Google Scholar 

  • Kamb, B.: 1965, ‘Structure of Ice VI’, Science 150, 205–209.

    ADS  Google Scholar 

  • Kargel, J. S.: 1992, ‘Ammonia-Water Volcanism on Icy Satellites: Phase Relations at 1 Atmosphere’, Icarus 100, 556–574.

    Article  ADS  Google Scholar 

  • Khurana, K. K., Kivelson, M. G., Russell, C. T., Walker, R. J., and Southwood, D. J.: 1997, ‘Absence of an Internal Magnetic Field of Callisto’, Nature 387, 262–264.

    Article  ADS  Google Scholar 

  • Khurana, K. K, Kivelson, M. G., Stevenson, D. J., Schubert, G., Russell, C. T., Walker, R. J., and Polanskey, C.: 1998, ‘Induced Magnetic Fields as Evidence for Subsurface Oceans in Europa and Callisto’, Nature 395, 777–780.

    Article  ADS  Google Scholar 

  • Kingery, W. D., Franck, J., Coble, R. L., and Vasilos, T.: 1954, ‘Thermal Conductivity: X, Data for Several Pure Oxide Materials Corrected to Zero Porosity’, J. Amer. Ceram. Soc. 37, 107–110.

    Google Scholar 

  • Kivelson, M. G., Khurana, K. K., Joy, S., Russell, C. T., Southwood, D. J., Walker, R. J., and Polanskey, C.: 1997, ‘Europa's Magnetic Signature: Report from Galileo's Pass on 19 December 1996’, Science 276, 1239–1241.

    Article  ADS  Google Scholar 

  • Kivelson, M. G., Khurana, K. K., Russell, C. T., Walker, R. J., Warnecke, J., Coroniti, F. V., Polanskey, C., Southwood, D. J., and Schubert, G.: 1996, ‘Discovery of Ganymede's Magnetic Field by the Galileo Spacecraft’, Nature 384, 537–541.

    Article  ADS  Google Scholar 

  • Klinger, J. and Neumaïer, K.: 1969, ‘Conductibilité thermique de la glace’, C.R. Acad. Sci. Paris 269, Series B, 945–948.

    Google Scholar 

  • Krupskii, I. N., Manzhely, V. G., and Koloskova, L. A.: 1968, ‘Thermal Conductivity of Solid Ammonia’, Physica Status Solidi 27, 263–268.

    Google Scholar 

  • Kusaba, K., Syona, Y., Kikegawa, T., and Shimomura, O.: 1997, ‘Structure of FeS under High Pressure’, J. Phys. Chem. Solids 58, 241–246.

    Article  ADS  Google Scholar 

  • Landholt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, New Series: 1975 (K.-H. Hellwege ed. in chief), Crystal Structure Data of Inorganic Compounds, Springer-Verlag, Berlin, Group III, Vol. 7, Part B, pp. 5–7.

    Google Scholar 

  • Laplace, P. S. de: 1796, Exposition du Système du Monde, Courcier, Paris, pp. 387–397.

    Google Scholar 

  • Larimer, J. W.: 1967, ‘Chemical Fractionation in Meteorites – I. Condensation of the Elements’, Geochim. Cosmochim. Acta 31, 1215–1238.

    Article  ADS  Google Scholar 

  • Leadbetter, A. J.: 1965, ‘The Thermodynamic and Vibrational Properties of H2O Ice and D2O Ice’, Proc. Roy. Soc. (Lond.) A287, 403–425.

    Article  ADS  Google Scholar 

  • Lewis, J. S.: 1971, ‘Satellites of the Outer Planets’, Science 172, 1127–1128.

    ADS  Google Scholar 

  • Lewis, J. S.: 1972, ‘Metal/Silicate Fractionation in the Solar System’, Earth Planet. Sci. Lett. 15, 286–290.

    Article  ADS  Google Scholar 

  • Lewis, J. S. and Prinn, R. G.: 1980, ‘Kinetic Inhibition of CO and N2 Reduction in the Solar Nebula’, Astrophys. J. 238, 357–364.

    Article  ADS  Google Scholar 

  • Lunine, J. L. and Stevenson, D. J.: 1982, ‘Formation of the Galilean Satellites in a Gaseous Nebula’, Icarus 52, 14–39.

    Article  ADS  Google Scholar 

  • Lupo, M. J. and Lewis, J. S.: 1979, ‘Mass-Radius Relationships in Icy Satellites,’ Icarus 40, 157–170.

    Article  ADS  Google Scholar 

  • Malhotra, R.: 1991, ‘Tidal Origin of the Laplace Resonance and the Resurfacing of Ganymede’, Icarus 94, 399–412.

    Article  ADS  Google Scholar 

  • Malhotra, R.: 1997, ‘Galileo Raises New Questions about Ganymede’, Phys. World 10, 21–22.

    Google Scholar 

  • McKinnon, W. B.: 1997, ‘Mystery of Callisto: Is it Undifferentiated?’, Icarus 130, 540–543.

    Article  ADS  Google Scholar 

  • Mizuno, H.: 1980, ‘Formation of the Giant Planets’, Prog. Theor. Phys. 64, 544–557.

    Article  ADS  Google Scholar 

  • Mueller, S. and McKinnon, W. B.: 1988, ‘Three-Layered Models of Ganymede and Callisto: Compositions, Structures, and Aspects of Evolution’, Icarus 76, 437–464.

    Article  ADS  Google Scholar 

  • Niemann, H. B., Atreya, S. K., Carignan, G. R., Donahue, T. M, Haberman, J. A., Harpold, D. N., Hartle, R. E., Hunten, D. M., Kasprzak, W. T., Mahaffy, P. R., Owen, T. C., Spencer, N. W., and Way, S. H.: 1996, ‘The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere’, Science 272, 846–849.

    ADS  Google Scholar 

  • Niemann, H. B., Atreya, S. K., Carignan, G. R., Donahue, T. M., Haberman, J. A., Harpold, D. N., Hartle, R. E., Hunten, D. M., Kasprzak, W. T., Mahaffy, P. R., Owen, T. C., and Way, S. H.: 1998, ‘The Composition of the Jovian Atmosphere as Determined by the Galileo Probe Mass Spectrometer’, J. Geophys. Res. 103, 22,831–22,845.

    Article  ADS  Google Scholar 

  • Overstreet, R. and Giaque, W. F.: 1937, ‘Ammonia. The Heat Capacity and Vapour Pressure of Solid and Liquids’, Heat of Vaporization. The Entropy Values from and Spectroscopic Data, J. Amer. Chem. Soc. 59, 254–259.

    Google Scholar 

  • Peale, S. J., Cassen, P., and Reynolds, R. T.: 1979, ‘Melting of Io by Tidal Dissipation’, Science 203, 892–894.

    ADS  Google Scholar 

  • Pollack, J. B. and Reynolds, R. T.: 1974, ‘Implications of Jupiter's Early Contraction History for the Composition of the Galilean Satellites’, Icarus 21, 248–253.

    Article  ADS  Google Scholar 

  • Prentice, A. J. R.: 1973, ‘On Turbulent Stress and the Structure of Young Convective Stars’, Astron. Astrophys. 27, 237–248.

    ADS  Google Scholar 

  • Prentice, A. J. R.: 1978a, ‘Origin of the Solar System: Gravitational Contraction of the Turbulent Protosun and the Shedding of a Concentric System of Gaseous Laplacian Rings’, Moon Planets 19, 341–398.

    Article  ADS  Google Scholar 

  • Prentice, A. J. R.: 1978b, ‘Towards a Modern Laplacian Theory for the Formation of the Solar System’, in S. F. Dermott (ed.), The Origin of the Solar System, John Wiley, New York, pp. 111–161.

    Google Scholar 

  • Prentice, A. J. R.: 1980, ‘Accretion of Planetesimals within a Gaseous Ring’, Aust. J. Phys. 33, 623–637.

    ADS  Google Scholar 

  • Prentice, A. J. R.: 1990, ‘Iron/silicate Fractionation and the Formation of the Inner Planets’, Meteoritics 25, 399–400.

    ADS  Google Scholar 

  • Prentice, A. J. R.: 1991, ‘Chemical Fractionation in Gas Rings and the Formation of the Solar System’, Proc. Astron. Soc. Aust. 9, 321–323.

    ADS  Google Scholar 

  • Prentice, A. J. R.: 1993, ‘The Origin and Composition of Pluto and Charon: Chemically Uniform Models’, Proc. Astron. Soc. Aust. 10, 189–195.

    ADS  Google Scholar 

  • Prentice, A. J. R.: 1995, ‘Origin and Bulk Chemical Composition of the Terrestrial Planets’, Eos Trans. AGU 76, F332.

    Google Scholar 

  • Prentice, A. J. R.: 1996a, ‘Origin and Bulk Chemical Composition of the Galilean Satellites and the Primitive Atmosphere of Jupiter: A Pre-Galileo Analysis’, Earth Moon Planets 73, 237–258.

    Article  ADS  Google Scholar 

  • Prentice, A. J. R.: 1996b, ‘Internal Structure and Bulk Chemical Composition of Io: A Pre-Galileo Prediction’, Phys. Lett. A213, 253–258.

    ADS  Google Scholar 

  • Prentice, A. J. R.: 1996c, ‘Origin, Thermophysical Structure and Magnetic Properties of the Icy Galilean Satellites’, Eos Trans. AGU 77, F172.

    Google Scholar 

  • Prentice, A. J. R.: 1999, ‘Origin and Bulk Chemical Composition of the Galilean Satellites of Jupiter and the Inner Planets’, in 30th Lunar Planet Science Conference, LPI Contribution No. 964, Houston, TX.

  • Prentice, A. J. R. and Freeman, J. C.: 1999, ‘The Origin of Callisto and its Subsurface Electrolytic Ocean’, Eos Trans. AGU 80(46), F607.

    Google Scholar 

  • Prentice, A. J. R. and ter Haar, D.: 1979, ‘Origin of the Jovian Ring and the Galilean satellites’, Nature 280, 300–302.

    Article  ADS  Google Scholar 

  • Pringle, J. E.: 1981, ‘Accretion Disks in Astrophysics’, Annu. Rev. Astron. Astrophys. 19, 137–162.

    Article  ADS  Google Scholar 

  • Proctor, T. M.: 1966, ‘Low-Temperature Speed of Sound in Single-Crystal Ice’, J. Acoust. Soc. Amer. 39, 972–979.

    Article  ADS  Google Scholar 

  • Ransford, G. A., Finnerty, A. A., and Collerson, K. D.: 1981, ‘Europa's Petrological Thermal History’, Nature 289, 21–24.

    Article  ADS  Google Scholar 

  • Robie, R. A., Hemingway, B. S., and Fisher, J. P.: 1978, Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures, U.S. Geol. Surv. Bull. 1452, U.S. Gov. Printing Office, Washington.

    Google Scholar 

  • Ross, R. G. and Kargel, J. S.: 1988, ‘Thermal Conductivity of Solar System Ices, with Special Reference to Martian Polar Caps’ in B. Schmidt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publishers, Dordrecht, pp. 33–62.

    Google Scholar 

  • Ross, R. G., Anderson, P., and Bäckström, G.: 1977, ‘Thermal Conductivity of Nine Solid Phases of H2O’, High Temperatures-High Pressures 9, 87–96.

    Google Scholar 

  • Schatzman, E.: 1949, ‘On Certain Paths of Stellar Evolution. I. Preliminary Remarks’, Bull. Acad. Roy. Belgique 3, 1141–1152.

    Google Scholar 

  • Schubert, G., Cassen, P., and Young, R. E.: 1979, ‘Subsolidus Convective Cooling Histories of Terrestrial Planets’, Icarus 38, 192–211.

    Article  ADS  Google Scholar 

  • Schubert, G., Zhang, K., Kivelson, M. G., and Anderson, J. D.: 1996, ‘The Magnetic Field and Internal Structure of Ganymede’, Nature 384, 544–545.

    Article  ADS  Google Scholar 

  • Showman, A. P. and Ingersoll, A. P.: 1998, ‘Interpretation of Galileo Probe Data and Implications for Jupiter's Dry Downdrafts’, Icarus 132, 205–220.

    Article  ADS  Google Scholar 

  • Slack, G. A.: 1962, ‘Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 crystals from 3 to 300 K’, Phys. Rev. 126, 427–441.

    Article  ADS  Google Scholar 

  • Standish, E. M.: 1990, ‘The Observational Basis for JPL's DE200, the Planetary Ephemerides of the Astronomical Almanac’, Astron. Astrophys. 233, 252–271.

    ADS  Google Scholar 

  • Stewart, J. W.: 1960, ‘Compression and Phase Transitions of Solid NH3, SiF4, H2S and CF4’, J. Chem. Phys. 33, 128–133.

    Article  ADS  Google Scholar 

  • ter Haar, D.: 1949, ‘Stellar Rotation and Age’, Astrophys. J. 110, 321–328.

    Article  ADS  Google Scholar 

  • ter Haar, D.: 1967, ‘On the Origin of the Solar System’, Annu. Rev. Astron. Astrophys. 5, 267–278.

    Article  ADS  Google Scholar 

  • Thomas, P. C., Davies, M. E., Colvin, T. R., Oberst, J., Schuster, P., Neukum, G., Carr, M. H., McEwen, A. S., Schubert, G., Belton, M. J. S., and the Galileo Imaging Team: 1998, ‘The Shape of Io from Galileo Limb Measurements’, Icarus 135, 175–180.

    Article  ADS  Google Scholar 

  • Touloukian, Y. S. and Buyco, E. H.: 1970, Thermophysical Properties of Matter, Volume 5, Specific Heat: Nonmetallic Solids, IFI/Plenum, New York, Washington.

    Google Scholar 

  • Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G.: 1970a, Thermophysical Properties of Matter, Volume 2, Thermal Conductivity: Nonmetallic Solids, IFI/Plenum, New York, Washington.

    Google Scholar 

  • Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Lee, T. Y. R.: 1970b, Thermophysical Properties of Matter, Volume 13, Thermal Expansion: Nonmetallic Solids, IFI/Plenum, New York, Washington.

    Google Scholar 

  • Turcotte, D. L. and Schubert, G.: 1982, Geodynamics: Applications of Continuum Physics to Geological Problems, John Wiley, New York, 140 pp.

    Google Scholar 

  • von Zahn, U., Hunten, D. M., and Lehmacher, G.: 1998, ‘Helium in Jupiter's Atmosphere: Results from the Galileo Probe Helium Interferometer Experiment’, J. Geophys. Res. 103, 22,815–22,829.

    Article  ADS  Google Scholar 

  • Wasson, J. T.: 1985, Meteorites: Their Record of Early Solar-System History, W. H. Freeman, New York, 187 pp.

    Google Scholar 

  • Whalley, E.: 1969, ‘Structure Problems in Ice’, in N. Riehl, B. Bullemer, and H. Engelhardt (eds.), Physics of Ice, Plenum Press, New York, pp. 19–43.

    Google Scholar 

  • Whipple, F. L.: 1968, Earth, Moon, and Planets, 3rd edn., Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Zhang, C. Z.: 2000, ‘A Study of Internal StructureModels and Dynamical Parameters of Ganymede’, Earth Moon Planets 84, 115–121.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics and Statistics, Monash University, Victoria 800, Australia and Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, U.S.A.

    A. J. R. Prentice

Authors
  1. A. J. R. Prentice
    View author publications

    You can also search for this author inPubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prentice, A.J.R. Origin, Bulk Chemical Composition And Physical Structure Of The Galilean Satellites Of Jupiter: A Post-Galileo Analysis. Earth, Moon, and Planets 87, 11–55 (1999). https://doi.org/10.1023/A:1010692812892

Download citation

  • Issue Date: July 1999

  • DOI: https://doi.org/10.1023/A:1010692812892

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Rock Mass Fraction
  • Galilean Satellite
  • Bulk Chemical Composition
  • Thermoremanent Magnetization
  • Galileo Orbiter
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

18.218.8.237

Not affiliated

Springer Nature

© 2025 Springer Nature