Skip to main content
Log in

Tobacco and Arabidiopsis SLT1 mediate salt tolerance of yeast

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A tobacco cDNA (NtSLT1, for Nicotiana tabacum sodium- and lithium-tolerant) was isolated by functional complementation of the salt-sensitive phenotype of a calcineurin (CaN)-deficient yeast mutant (cnbΔ, regulatory subunit null). CaN is a Ca2+/calmodulin-dependent type 2B protein phosphatase that regulates Na+ homeostasis in yeast. This phosphatase modulates plasma membrane K+/Na+ selectivity through the activation of high-affinity K+ transport, and increaseses extracellular Na+ efflux by activation and transcriptional induction of the Na+/Li+translocating P-type ATPase encoded by ENA1. Expression of N-terminally truncated NtSLT1 (Met-304), but not full-length protein, suppressed salt sensitivity of cnb1. Truncated NtSLT1 also increased salt tolerance of wild-type yeast, indicating functional sufficiency. NtSLT1 encodes a protein of yet unknown function but experimentation in yeast confirms it as a salt tolerance determinant. The Arabidopsis thaliana orthologue, AtSLT1, also suppressed salt sensitivity of cnbΔ but only when expressed without the N-terminus (Met-301), suggesting that this region of the proteins from these evolutionarily diverse plant species contains an autoinhibitory domain. NtSLT1 enhanced transcription of the CaN-dependent ENA1 gene promoter and compensated the salt sensitivity of a mutant deficient in TCN1 - a transcription factor that is activated by CaN and then induces ENA1 expression. NtSLT1 partially suppressed the salt sensitivity of ena1-4 indicating that NtSLT1 has both ENA-dependent and independent functions. NtSLT1 suppressed spk1 hal4 (SPK1/HAL4 which encodes a serine-threonine kinase that regulates TRK1-2 transporters to have high K+/Na+ selectivity) but not ena1-4 trk1-2 implicating the ENA-independent function to be through TRK1-2. Together, these results implicate SLT1 as a signal regulatory molecule that mediates salt tolerance by modulating Na+ homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J.A., Huprikar, S.S., Kochian, L.V., Lucas, W.J. and Gaber, R.F. 1992. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89: 3736-3740.

    Google Scholar 

  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G. and Struhl, K. (Eds.) 1988. Current Protocols in Molecular Biology, Volumes 1 and 2. John Wiley, NewYork.

    Google Scholar 

  • Bressan, R.A., Hasegawa, P.M. and Pardo, J.M. 1998. Plants use calcium to resolve salt stress. Trends Plant Sci. 3: 411-412.

    Google Scholar 

  • Clemens, S., Antosiewicz, D.M., Ward, J.M., Schachtman, D.P. and Schroeder, J.I. 1998. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc. Natl. Acad. Sci. USA 95: 12043-12048.

    Google Scholar 

  • Chomczynski, P. and Sacchi, N. 1987. Single-step method for RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159.

    Google Scholar 

  • Cunningham, K.W. and Fink, G.R. 1996. Calcineurin inhibits VCX1-dependent H+/Ca2+ exchange and induced Ca2+ AT-Pases in Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 2226-2237.

    Google Scholar 

  • Dellaporta, S.L., Wood, J. and Hicks, J.B. 1983. A plant DNA mini preparation: version II. Plant Mol. Biol. Rep. 1: 19-21.

    Google Scholar 

  • Dreyer, I., Horeau, C., Lemaillet, G., Zimmermann, S., Bush,D.R., Rodriguez-Navarro, A., Schachtman, D.P., Spalding, E.P., Sentenac, H. and Gaber, R.F. 1999. Identification and characterization of plant transporters using heterologous expression systems. J. Exp. Bot. 50: 1073-1087

    Google Scholar 

  • Elledge, S.J., Mullen, J.T., Ramer, S.W., Spottswood, M. and Davis, R.W. 1991. λYES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc. Natl. Acad. Sci. USA 88: 1731-1735.

    Google Scholar 

  • Farcasanu, I.C., Hirata, D., Tsuchiya, E., Nishiyama, F. and Miyakawa, T. 1995. Protein phosphatase 2B of Saccharomyces cerevisiae is required for tolerance to manganese, in blocking the entry of ions into the cell. Eur. J. Biochem. 232: 712-717.

    Google Scholar 

  • Frommer, W.B. and Ninnemann, O. 1995. Heterologous expression of genes in bacterial, fungal, animal, and plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 419-444.

    Google Scholar 

  • Gaxiola R.A., Rao, R., Sherman, A., Grisafi, P., Alper, S.L. and Fink, G.R. 1999. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 9: 1480-1485.

    Google Scholar 

  • Gil-Mascarell, R., López-Coronado, J.M., Bellés, J.M., Serrano, R. and Rodriguez, P.L. 1999. The Arabidopsis HAL2-like gene family includes novel sodium-sensitive phosphatase. Plant J. 17: 373-383.

    Google Scholar 

  • Haro, R., Bañuelos, M.A., Quintero, F.J., Rubio, F. and Rodríguez-Navarro, A. 1993. Genetic basis of sodium exclusion and sodium tolerance in yeast. A model for plants. Physiol. Plant. 89: 868-874.

    Google Scholar 

  • Harper, J.F., Hong, B., Hwang, I., Guo, H.Q., Stossard, R., Huang, J.F., Palmgren, M.G. and Sze, H. 1998. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal auto-inhibitory domain. J. Biol. Chem. 273: 1099-1106.

    Google Scholar 

  • Hasegawa, P.M., Bressan, R.A., Zhu, J.-K. and Bohnert, H.J. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499

    Google Scholar 

  • Hirschi, K.D., Zhen R.G., Cunningham, K.W., Rea, P.A. and Fink, G.R. 1996. CAX1, and H+/Ca2+ antiporter from Arabidopsis. Proc. Natl. Acad. Sci. USA 93: 8782-8786.

    Google Scholar 

  • Johnston, M. and Davis, R.W. 1984. Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell Biol. 4: 1440-1448.

    Google Scholar 

  • Klee, C.B., Draetta, G.F. and Hubbard, M.J. 1998. Calcineurin. Adv. Enzymol. 61: 149-200.

    Google Scholar 

  • Kudla, J., Xu, Q., Harter, K., Gruissem, W. and Luan, S. 1999. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals. Proc. Natl. Acad. Sci. USA 96: 4718-4723.

    Google Scholar 

  • Lapinskas, P.L., Cunningham, K.W., Liu, X.F., Fink, G.F. and Cizewski Culotta, V. 1995. Mutations in PMR1 suppress oxidative damage in yeast cells lacking super oxide dismutase. Mol. Cell Biol. 15: 1382-1388.

    Google Scholar 

  • Lee, J.H., Van Montagu, M. and Verbruggen, N. 1999. A highly conserved kinase is an essential component for stress tolerance in yeast and plant cells. Proc. Natl. Acad. Sci. USA 96: 5873-5877.

    Google Scholar 

  • Liang, F., Cunningham, K.W., Harper, J.F. and Sze, H. 1997. ECA1 complements yeast mutants defective in Ca2+ pumps and encodes endoplasmic reticulum-type Ca2+-ATPase in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94: 8579-8584.

    Google Scholar 

  • Lippuner, V., Cyert, M.S. and Gasser, C.S. 1996. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J. Biol. Chem. 271: 12859-12866.

    Google Scholar 

  • Liu, J. and Zhu, J.-K. 1998. A calcium sensor homolog required for plant salt tolerance. Science 280: 1943-1945.

    Google Scholar 

  • Maathuis, F.J.M. and Amtmann, A. 1999. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ratios. Ann. Bot. 84: 123-133.

    Google Scholar 

  • Mauri, I., Maddaloni, M., Lohmer, S., Motto, M., Salamini, F., Thompson, R. and Martegani, E. 1993. Functional expression of the transcriptional activator Opaque-2 of Zea mays in transformed yeast. Mol. Gen. Genet. 241: 319-326.

    Google Scholar 

  • Memelink, J., Swords, K.M.M., Staehelin, L.A. and Hoge, J.H.C. 1994. Southern, northern and western blot analysis. In: S.B. Gelvin R.A. Schilperoort (Eds.) Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. F1: 1-23

    Google Scholar 

  • Mendoza, I., Rubio, F., Rodriguez-Navarro, A. and Pardo, J.M. 1994. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 269: 8792-8796.

    Google Scholar 

  • Mendoza, I., Quintero, F.J., Bressan, R.A., Hasegawa, P.M. and Pardo, J.M. 1996. Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J. Biol. Chem. 271: 23061-23067.

    Google Scholar 

  • Mumberg, D., Müller, R. and Funk, M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156: 119-122.

    Google Scholar 

  • Mulet, J.M., Leube, M.P., Kron, S.J., Rios, G., Fink, G.R. and Serrano, R. 1999. A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protein kinases modulate the Trk1-Trk2 potassium transporter. Mol. Cell Biol. 19: 3328-3337.

    Google Scholar 

  • Murguía, J.R., Bellés, J.M. and Serrano, R. 1996. The yeast HAL2 nucleotidase is an in vivo target of salt toxicity. J. Biol. Chem. 271: 29029-29033.

    Google Scholar 

  • Nakamura, T., Liu, Y., Hirata, D., Namba, H., Harada, S., Hirokawa, T. Miyakawa, T. 1993. Protein phosphatase type 2B (calcineurin)-modulated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J. 12: 4063-4071.

    Google Scholar 

  • Niu, X., Bressan, R.A., Hasegawa, P.M. and Pardo, J.M. 1995. Ion homeostasis in NaCl stress environments. Plant. Physiol. 109: 735-742.

    Google Scholar 

  • Palmgren, M.G. and Harper, J.F. 1999. Pumping with plant P-type ATPases. J. Exp. Bot. 50: 883-893.

    Google Scholar 

  • Pardo, J.M., Reddy, M., Yang, S., Maggio, A., Huh, G.H., Matsumoto, T., Coca, M.A., Koiwa, H., Yun, D.J., Watad,A.A., Bressan, R.A. and Hasegawa, P.M. 1998. Stress signaling through Ca 2 C /calmodulin-dependent protein phosphatase calcineurin modulates salt adaptation in plants. Proc. Natl. Acad. Sci. USA 95: 9681-9686.

    Google Scholar 

  • Parsons J.N., Wiederrecht, G.J., Salowe, S., Burbaum, J.J., Rokosz, L.L., Kincaid, R.L. and O'Keefe, S.J. 1994 Regulation of calcineurin phosphatase activity and interaction with the FK-506.FK506 binding complex. J. Biol. Chem. 269: 19610-19616.

    Google Scholar 

  • Peng, Z. and Verma, D.P.S. 1995. A rice HAL2-like gene encodes a Ca2+-sensitive 3′(2′),5′-diphosphonucleoside 3′(2′)-phosphohydrolase and complements yeast met22 and Escherichia coli cysQ mutations. J. Biol. Chem. 270: 29105-29110.

    Google Scholar 

  • Piao, H.L., Pih, K.T., Lim, J.H., Kang, S.G., Jin, J.B., Kim, S.H. and Hwang, I. 1999. An Arabidopsis GSK3/shaggy-like gene that complements yeast salt stress-sensitive mutants is induced by NaCl and abscisic acid. Plant Physiol. 119: 1527-1534.

    Google Scholar 

  • Pozos, T.C., Sekler, I. and Cyert, M.S. 1996. The product of HUM1, a novel yeast gene, is required for vacuolar Ca2+ /H+ exchange and is related to mammalian Na+/Ca2+ exchangers.Mol. Cell Biol. 16: 3730-3741.

    Google Scholar 

  • Quintero, F.J., Garciadeblas, B. and Rodriguez-Navarro, A. 1996. The SAL1 gene of Arabidopsis thaliana, encoding an enzyme with 3′(2′),5′-bisphosphate nucleotidase and inositol polyphos-phate 1-phosphatase activities, increases salt tolerance in Saccharomyces cerevisiae. Plant Cell 8: 529-537.

    Google Scholar 

  • Quintero, F.J., Blatt, M.R. and Pardo, J.M. A plant Na+/H+ antiporter involved in ion compartmentation. FEBS Lett., in press.

  • Reynolds, A. and Lundblad, V. 1993. Yeast vectors and assays for expression of cloned genes. In: F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith and K. Struhl (Eds.) Current Protocols in Molecular Biology, Volumes 1 and 2, John Wiley, New York, pp. 13.6.1-13.6.4.

    Google Scholar 

  • Rubio, F., Gassmann, W. and Schroeder, J.I. 1995. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270: 1660-1663.

    Google Scholar 

  • Rubio, F., Schwarz, M., Gassmann, W. and Schroeder, J.I. 1999. Genetic selection of mutations in the high affinity K+ transporter HKT1 that define functions of a loop site for reduced Na+ permeability and increase Na+ tolerance. J. Biol. Chem. 274: 6839-6847.

    Google Scholar 

  • Schachtman, D.P. and Schroeder, J.L. 1994. Cloning, transport mechanism and localization of a high affinity potassium uptake transporter from higher plants. Nature 370: 655-658.

    Google Scholar 

  • Sentenac, H., Bonneaud, N., Minet, M., Lacroute, F., Salmon, J.M., Gaymard, F. and Grignon, C. 1992. Cloning and expression in yeast of a plant potassium ion transport system. Science 256: 663-665.

    Google Scholar 

  • Serrano, R. and Gaxiola, T. 1994. Microbial models and salt stress tolerance in plants. Crit. Rev. Plant Sci. 13: 121-138.

    Google Scholar 

  • Sherman, F. 1991. Getting started with yeast. Meth. Enzmol. 194: 3-21.

    Google Scholar 

  • Singh, N.K., Nelson, D.E., Kuhn, D., Hasegawa, P.M. and Bressan, R.A. 1989. Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol. 90: 1096-1101.

    Google Scholar 

  • Tanida I., Hasegawa, A., Iida, H., Ohya, Y. and Anraku, Y. 1995. Cooperation of calcineurin and vacuolar H C ATPase in intracellular Ca2+ homeostasis of yeast cells. J. Biol. Chem. 270: 10113-10119.

    Google Scholar 

  • Zhu, J.K., Hasegawa, P.M. and Bressan, R.A. 1997. Molecular aspects of osmotic stress in plants. Crit. Rev. Plant Sci. 16: 253-277.

    Google Scholar 

  • Zhu, J.K., Liu, J. and Xiong, L. 1998. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10: 1181-1191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, T.K., Pardo, J.M., Takeda, S. et al. Tobacco and Arabidiopsis SLT1 mediate salt tolerance of yeast. Plant Mol Biol 45, 489–500 (2001). https://doi.org/10.1023/A:1010659207604

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010659207604

Navigation