Skip to main content
Log in

Species Association Among Predaceous and Phytophagous Apple Mites (Acari: Eriophyidae, Phytoseiidae, Stigmaeidae, Tetranychidae)

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Predator–predator, predator–prey, and prey–prey associations among nine species of mites were studied in a plot of 100 “Red Delicious” apple (Malus pumila Miller) trees from 1990 to 1997. In 1990, seven-year-old trees were inoculated with Panonychus ulmi (Koch), Tetranychus urticae Koch (Acari: Tetranychidae) or both, and sprayed with azinphosmethyl (alone or plus endosulfan), or nothing. The species Zetzellia mali (Ewing) (Acari: Stigmaeidae), Amblyseius andersoni Chant (Acari: Phytoseiidae), Eotetranychus sp., Bryobia rubrioculus (Scheuten) (Acari: Tetranychidae), and Aculus schlechtendali Nalepa (Acari: Eriophyidae) were already present or immigrated into plots, and Galendromus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten (Acari: Phytoseiidae) were introduced. Yule's V association index was used to measure positive, neutral, or negative interspecific associations for each species pair, because of its robustness with spatially autocorrelated data. We found that pesticide and release treatments did not greatly affect the association results, but there were strong seasonal differences. Predator–predator associations were the strongest and most consistent, showing negative associations in the early and mid seasons, and neutral ones in late season. Negative associations of T. pyri with other predators were the strongest, which is consistent with evidence that this mite can detect other predators on a leaf. Predator–prey seasonal associations were mixed, with some positive and others negative, with most significant associations occurring in the mid season. One prey–prey interaction was positive, again in mid season, most likely because of similar habitat preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cole, L.C. 1949. The measurement of interspecific association. Ecology 30: 411-424.

    Google Scholar 

  • Croft, B.A. 1994. Biological control of apple mites by a phytoseiid mite complex and Zetzellia mali (Acari: Stigmaeidae): Long-term effects and impact of azinphosmethyl on colonization by Amblyseius andersoni (Acari: Phytoseiidae). Environ. Entomol. 23: 1317-1325.

    Google Scholar 

  • Croft, B.A. andCroft, M.B. 1996. Intra-and interspecific predation among adult female phytoseiid mites (Acari: Phytoseiidae): effects on survival and reproduction. Environ. Entomol. 25: 855-858.

    Google Scholar 

  • Croft, B.A. andHoying, S.A. 1977. Competitive displacement of Panonychus ulmi (Acarina: Tetranychidae) by Aculus schlechtendali (Acarina: Eriophyidae) in apple orchards. Canad. Entomol. 109: 1025-1034.

    Google Scholar 

  • Croft, B.A.,Kim, S.S. andKim, D.I. 1996. Intra-and interspecific predation on four life stage groups by the adult females of Metaseiulus occidentalis, Typhlodromus pyri, Neoseiulus fallacis, and Amblyseius andersoni. Exp. Appl. Acarol. 20: 435-444.

    Google Scholar 

  • Croft, B.A. andMacRae, I.V. 1992a. Biological control of apple mites by mixed populations of Metaseiulus occidentalis (Nesbitt) and Typhlodromus pyri Scheuten (Acari: Phytoseiidae). Environ. Entomol. 21: 202-209.

    Google Scholar 

  • Croft, B.A. andMacRae, I.V. 1992b. Persistence of Typhlodromus pyri and Metaseiulus occidentalis (Acari: Phytoseiidae) on apple after inoculative release and competition with Zetzellia mali (Acari: Stigmaeidae). Environ. Entomol. 21: 1168-1177.

    Google Scholar 

  • Croft, B.A. andMacRae, I.V. 1993. Biological control of apple mites: impact of Zetzellia mali (Acari: Stigmaeidae) on Typhlodromus pyri and Metaseiulus occidentalis (Acari: Phytoseiidae). Environ. Entomol. 22: 865-873.

    Google Scholar 

  • Croft, B.A. andSlone, D.H. 1997. Equilibrium densities of European red mite (Acari: Tetranychidae) after exposure to three levels of predaceous mite diversity on apple. Environ. Entomol. 26: 391-399.

    Google Scholar 

  • Dale, M.R.T.,Blundon, D.J.,MacIsaac, D.A. andThomas, A.G. 1991. Multiple species effects and spatial autocorrelation in detecting species associations. J. Veg. Sci. 2: 635-642.

    Google Scholar 

  • Doutt, R.L. andDeBach, P. 1964. Some biological control concepts and questions, In: Biological Control of Insect Pests and Weeds, P. DeBach (ed.), pp. 118-142. Reinhold, New York.

    Google Scholar 

  • Ehler, L.E. 1992. Guild analysis in biological control. Environ. Entomol. 21: 26-40.

    Google Scholar 

  • Janson, S. andVegelius, J. 1981. Measures of ecological association. Oecologia 49: 371-376.

    Google Scholar 

  • Jones, D. 1984. Use, misuse, and role of multiple-comparison procedures in ecological and agricultural entomology. Environ. Entomol. 13: 635-649.

    Google Scholar 

  • MacRae, I.V. andCroft, B.A. 1993. Influence of temperature on interspecific predation and cannibalism by Metaseiulus occidentalis and Typhlodromus pyri (Acarina: Phytoseiidae). Environ. Entomol. 22: 770-775.

    Google Scholar 

  • MacRae, I.V. andCroft, B.A. 1996. Differential impact of egg predation by Zetzellia mali (Acari: Stigmaeidae) on Metaseiulus occidentalis and Typhlodromus pyri (Acari: Phytoseiidae). Exp. Appl. Acarol. 20: 143-154.

    Google Scholar 

  • McCulloch, C.E. 1985. Variance tests for species association. Ecology 66: 1676-1681.

    Google Scholar 

  • McMurtry, J.A. andCroft, B.A. 1997. Life-styles of phytoseiid mites and their roles in biological control. Ann. Rev. Entomol. 42: 291-321.

    Google Scholar 

  • Mendenhall, W. 1968. Introduction to Probability and Statistics. 2nd edn, Wadsworth Publishing Company, Belmont, CA.

    Google Scholar 

  • Overmeer, W.P.J. 1985. Diapause, In: Spider Mites. Their Biology, Natural Enemies and Control, W. Helle andM.W. Sabelis (eds.), Vol. 1b, pp. 95-102. World Crop Pests, Elsevier, Amsterdam.

    Google Scholar 

  • Palmer, M.W. andvan der Maarel, E. 1995. Variance in species richness, species association, and niche limitation. Oikos 73: 203-213.

    Google Scholar 

  • Pielou, E.C. 1977. Mathematical Ecology. 2nd edn. Wiley, New York.

    Google Scholar 

  • Roxburgh, S.H. andChesson, P. 1998. A new method for detecting species associations with spatially autocorrelated data. Ecology 79: 2180-2192.

    Google Scholar 

  • Sabelis, M.W. 1985. Reproductive Strategies, In: Spider Mites, Their Biology, Natural Enemies and Control, W. Helle andM.W. Sabelis (eds.), Vol. 1a, pp. 265-278. World Crop Pests, Elsevier, Amsterdam.

    Google Scholar 

  • Saito, Y. 1985. Life types of spider mites, In: Spider Mites, Their Biology, Natural Enemies and Control, W. Helle andM. W. Sabelis (eds.), Vol. 1a, pp. 253-264. World Crop Pests, Elsevier, Amsterdam.

    Google Scholar 

  • Santos, M.A. 1991. Searching behavior and associational response of Zetzellia mali (Acarina: Stigmaeidae). Exp. Appl. Acarol. 11: 81-87.

    Google Scholar 

  • Schausberger, P. 1997. Inter-and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari: Phytoseiidae). Exp. Appl. Acarol. 21: 131-150.

    Google Scholar 

  • Schausberger, P. 1999a. Juvenile survival and development in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari: Phytoseiidae) feeding on con-and heterospecific immatures, In: Ecology and Evolution of the Acari, J. Bruin,L.P.S. van der Geest andM.W. Sabelis (eds.), pp. 367-374. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Schausberger, P. 1999b. Predation preference of Typhlodromus pyri and Kampimodromus aberrans when offered con-and heterospecific immature life stages. Exp. Appl. Acarol. 23: 389-398.

    Google Scholar 

  • Schausberger, P. andCroft, B.A. 1999. Predation on and discrimination between conand heterospecific eggs among specialist and generalist phytoseiid mite species (Acari: Phytoseiidae). Environ. Entomol. 28: 523-528.

    Google Scholar 

  • Schluter, D. 1984. A variance test for detecting species associations, with some example applications. Ecology 65: 998-1005.

    Google Scholar 

  • Slone, D.H. andCroft, B.A. 1998a. Detecting differences in arthropod aggregation by comparing the number of occupied sample units. Entomol. Exp. Appl. 87: 59-66.

    Google Scholar 

  • Slone, D.H. andCroft, B.A. 1998b. Spatial aggregation of apple mites (Acari: Phytoseiidae, Stigmaeidae, Tetranychidae) as measured by a binomial model: Effects of life stage, reproduction, competition, and predation. Environ. Entomol. 27: 918-925.

    Google Scholar 

  • Southwood, T.R.E. 1991. Ecological Methods with Particular Reference to the Study of Insect Populations. 2nd edn., Chapman and Hall, London.

    Google Scholar 

  • Tavaré, S. andAltham, P.M.E. 1983. Serial dependence of observations leading to contingency tables, and corrections to chi-squared statistics. Biometrika 70: 139-144.

    Google Scholar 

  • van der Geest, L.P.S. 1985. Aspects of physiology, In: Spider Mites, Their Biology, Natural Enemies and Control, W. Helle andM.W. Sabelis (eds), Vol. 1a, pp. 253-264. World Crop Pests, Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slone, D., Croft, B. Species Association Among Predaceous and Phytophagous Apple Mites (Acari: Eriophyidae, Phytoseiidae, Stigmaeidae, Tetranychidae). Exp Appl Acarol 25, 109–126 (2001). https://doi.org/10.1023/A:1010640631355

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010640631355

Navigation