Skip to main content
Log in

Identification and expression of the Pseudomonas syringae pv. aptata hrpZPsa gene which encodes an harpin elicitor

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A sequence homologous to an internal fragment 0.75 kb BstXI of the Pseudomonas syringae pv. syringae hrpZ gene was identified in Pseudomonas syringae pv. aptata NCPPB 2664, the causal agent of bacterial blight in sugar beet, lettuce and other plants, and in E. coli DH10B (pCCP1069) containing the P. syringae pv. aptata hrp gene cluster. PCR with oligonucleotides, based on the hrpZPss gene and used as primers with the total genomic DNA of P. syringae pv. aptata, amplified a 1 kb fragment that hybridized with the probe in highly stringent conditions. The amplicon was cloned into the pGEM-T® plasmid vector, amplified in E. coli DH5α and sequenced. The sequence showed 95%, 83% and 61% identity with those of hrpZPss, hrpZPsg and hrpZPst genes encoding the harpins of the P. syringae pv. syringae, glycinea and tomato, respectively. The amplicon was cloned into the pMAL® expression system. The expressed protein, fused with maltose-binding protein, was cleaved with a specific protease factor Xa, and purified using affinity chromatography. On the basis of the amino acid sequence and its ability to induce HR in tobacco leaves, it was identified as a P. syringae pv. aptata harpin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ádám AL, Pike S, Hoyos ME, Stone JM, Walker JC & Novacky A (1997) Rapid and transient activation of a myelin basic protein kinase in tobacco leaves treated with harpin from Erwinia amylovora. Plant Physiol. 115: 853-860

    Google Scholar 

  • Alfano J & Collmer A (1997) The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J. Bacteriol. 179: 5655-5662

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403-410

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA & Struhl K (1987) Current Protocols in Molecular Biology. Wiley J & Sons, NY

    Google Scholar 

  • Baker CJ, Orlandi EW & Mock NM (1993) Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol. 102: 1341-1344

    Google Scholar 

  • Bauer DW, Garr ER, Kim JF, Norelli JL, Aldwinckle HS & Beer SV (1999) New approaches to the development of transgenic plants resistant to fire blight. Acta Horticult. 489: 301-304

    Google Scholar 

  • Birnboim HC (1983) A rapid alkaline extraction method for the isolation of plasmid DNA. In: Wu L, Grossman J & Wo K (Eds) Method in Enzymology, Vol 100 (pp 243-255). Academic Press, USA

    Google Scholar 

  • Bogdanove AJ, Beer SV, Bonas U, Boucher CA, Collmer A, Coplin DL, Cornelis GR, Huang H-C, Hutcheson SW, Panopoulos NJ & Van Gijsegem F (1996) Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20: 681-683

    Google Scholar 

  • Charkowski A, Huang H-C & Collmer A. (1997) Altered localisation of HrpZ in Pseudomonas syringae pv. syringae hrp mutants suggests that different components of the type III secretion pathway control protein translocation across the inner and outer membranes of Gram-negative bacteria. J. Bacteriol. 179: 3866-3874

    Google Scholar 

  • Devereaux J, Haeberli P & Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Gene 12: 387-395

    Google Scholar 

  • Gopalan S, Bauer DW, Alfano J, Loniello AO, He SY & Collmer A (1996) Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell 8: 1095-1105

    Google Scholar 

  • He SY (1998) Type III protein secretion systems in plant and animal pathogenic bacteria. Annu. Rev. Phytopathol. 36: 363-392

    Google Scholar 

  • He SY, Huang H-C & Collmer A (1993) Pseudomonas syringae pvs. syringae harpin Pss: a protein that secreted via the hrp pathway and elicits the Hypersensitive Response in plants. Cell 73: 1255-1266

    Google Scholar 

  • Hoyos ME, Stanley CM, He SY, Pike S, Pu X-A & Novacky A (1996) The interaction of harpinPss with plant cell walls. Mol. Plant-Microbe Interact. 9: 608-616

    Google Scholar 

  • Huang H-C, Lin RH, Chang CJ, Collmer A & Deng WL (1995) The complete hrp gene cluster of Pseudomonas syringae pvs. syringae 61 includes two blocks of genes required for harpinPss secretion that are arranged colinearly with Yersinia ysc homologs. Mol. Plant-Microbe Interact. 8: 733-746

    Google Scholar 

  • Huynh TV, Dahlbeck D & Staskawicz BJ (1989) Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245: 1374-1377

    Google Scholar 

  • Jin Q-L, Liu N-Z, Qiu J-L, Li D-B & Wang J (1997) A truncated fragment of harpinPss induces systemic resistance to Xanthomonas campestris pv. oryzae in rice. Physiol. Mol. Plant Pathol. 51: 243-257

    Google Scholar 

  • Kim JF, Wei Z-M & Beer SV (1997) The hrpA and hrpC operons of Erwinia amylovora encode components of a type III pathway that secretes harpin. J. Bacteriol. 179: 1690-1697

    Google Scholar 

  • Kim JF, Bauer DW, Bogdanove AJ, Wei Z-M, Dong H & Beer SV (1999) Secreted enigmatic proteins of Erwinia amylovora-For good and evil. Acta Horticult. 489: 371-375

    Google Scholar 

  • Lindgren PB (1997) The role of hrp genes during plant-bacterial interactions. Annu. Rev. Phytopathol. 35: 129-152

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL & Randall RJ (1951) Protein measurement with the Folin reagent. J. Biol. Chem. 193: 265-275

    Google Scholar 

  • Maryke A, Mansvelt EL & Bellstedt DU (1995) Production of a harpin elicitor by Pseudomonas syringae pv. syringae isolated from a nectarine tree. In: Rudolph K, Burr TJ, Mansfield JW, Stead D, Vivian A & Von Kretzell J (Eds) Pseudomonas syringae Pathovars and Related Pathogens (pp 333-338). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Minardi P & Musa AR (1996) Determinants of hypersensitivity in Pseudomonas syringae: role of extracellular proteins in plantmicrobe interactions. In: AAA BIOTEC. Advanced Biotechnologies for Agriculture, Nutrition and Environment. Abstracts (p 97). Stampa Litografia Tosi, Ferrara

    Google Scholar 

  • Minardi P (1995a) Cloning of genes required for hypersensitivity and pathogenicity in Pseudomonas syringae pv. aptata. Antonie van Leeuwenhoek. 67: 201-210

    Google Scholar 

  • Minardi P (1995b) Altered expression of Erwinia amylovora hrp genes in tobacco leaves pretreated with bacterial proteinlipopolysaccharides. J. Phytopathol. 143: 199-205

    Google Scholar 

  • Pike SM, Adam AL, Pu X-A, Hoyos ME, Laby R, Beer SV & Novacky A (1998) Effects of Erwinia amylovora harpin on tobacco leaf cell membranes are related to leaf necrosis and electrolyte leakage and distinct from perturbations caused by inoculated E. amylovora. Physiol. Mol. Plant Pathol. 53: 39-60

    Google Scholar 

  • Preston G, Huang H-C, He SY & Collmer A (1995) The hrpZ proteins of Pseudomonas syringae pvs. syringae, glycinea, and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol. Plant-Microbe Interact. 8: 717-732

    Google Scholar 

  • Roine E, Wei W, Yuan J, Nurmiaho-Lassila EL, Kalkkinen N, Romantschuk m, Wei WS, Juan J & He SY (1997) Hrp pilus: an hrp-dependent bacterial surface appendage produced by Pseudomonas syringae pv. tomato DC3000. Proc. Natl. Acad. Sci. USA 94: 3459-3464

    Google Scholar 

  • Rudolph KWE (1995) Pseudomonas syringae pathovars. In: US Singh, RS Singh & K Kohmoto, (Eds) Pathogenesis and host specificity in plant diseases. Histopathological, biochemical, genetic and molecular bases. Vol I: Prokaryotes (pp 47-138). Pergamon/Elsevier Science Ltd

  • Sambrook J, Frisch EF & Maniatis TA (1989) Molecular cloning: a laboratory manual. 2nd edn. Cold Spring Harbor Laboratory Press, NY

    Google Scholar 

  • Strobel NE, Ji C, Gopalan S, Kuc J & He SY (1996) Induction of systemic acquired resistance in cucumber by Pseudomonas syringae pv. syringae 61 HrpZPss protein. Plant J. 9: 431-439

    Google Scholar 

  • Wei Z-M & Beer SV (1996) Harpin from Erwinia amylovora induces plant resistance. Acta Horticult. 411: 223-225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Minardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musa, A., Minardi, P. & Mazzucchi, U. Identification and expression of the Pseudomonas syringae pv. aptata hrpZPsa gene which encodes an harpin elicitor. Antonie Van Leeuwenhoek 79, 61–71 (2001). https://doi.org/10.1023/A:1010280116487

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010280116487

Navigation