Skip to main content
Log in

Genetic variability and gene flow in the globally, critically-endangered Taita thrush

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Analysis of 155 individuals with seven polymorphicmicrosatellite DNA markers showed significant genetic differentiationbetween the only three remaining subpopulations of the globally,critically-endangered Taita thrush. Small, recently-disturbedsubpopulations such as studied here may violate the assumptions ofmutation-drift and gene flow-drift equilibrium inherent to mostpopulation genetic tools that estimate gene flow. We thereforeidentified putative dispersers using two recently-developed assignmenttests based on individual genotypes. Previous-generation and currentmigration rates between any two subpopulations were estimated at one andzero individuals per generation, respectively. Strong congruence withnon-genetic estimates of between-fragment dispersal provided indirectevidence for the accuracy of the assignment test. From a conservationperspective, the available demographic and genetic data suggest asubstantial threat to the long-term survival of at least the smallestsubpopulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beentje HJ (1987) An ecological and floristic study of the forests of the Taita Hill, Kenya. Utafiti, 1, 23–66.

    Google Scholar 

  • Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and population numbers of two populations using a coalescent approach. Genetics, 152, 763–773.

    PubMed  Google Scholar 

  • Brooks T, Lens L, Barnes J, Barnes R, Kihuria JK, Wilder C (1998) The conservation status of the forest birds of the Taita Hills, Kenya. Bird Conserv. Intern., 8, 119–139.

    Google Scholar 

  • Caro TM, Laurenson MK (1994) Ecological and genetic factors in conservation: a cautionary tale. Science, 263, 485–486.

    PubMed  Google Scholar 

  • Collar NJ, Stattersfield AJ, Crosby MJ (1994) Birds to Watch 2. The World List of Threatened Birds. BirdLife Conserv. Ser. No. 4. Cambridge, U.K., BirdLife International.

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001–2014.

    PubMed  Google Scholar 

  • Dallimer M (1999) Cross-species amplification success of avian microsatellites in the redbilled quelea Quelea quelea. Mol. Ecol., 8, 685–702.

    PubMed  Google Scholar 

  • Davies N, Villablanca FX, Roderick GK (1999) Determining the source of individuals: multilocus genotyping in nonequilibrium population genetics. TREE, 14, 17–21.

    PubMed  Google Scholar 

  • Degnan SM, Robertson BC, Clegg SM, Moritz CC (1999) Microsatellite primers for studies of gene flow and mating systems in white-eyes (Zosterops). Mol Ecol., 8, 159–160.

    PubMed  Google Scholar 

  • Ellegren H, Lifjeld JT, Slagsvold T, Primmer CR (1995) Handicapped males and extrapair paternity in pied flycatchers: a study using microsatellite markers. Mol. Ecol., 4, 739–744.

    Google Scholar 

  • Frankham R (1995a) Conservation genetics. Annu. Rev. Genetics, 29, 305–327.

    Google Scholar 

  • Frankham R (1995b) Effective population size/adult population size ratios in wildlife: a review. Genet. Res. Camb., 66, 95–107.

    Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: island populations. Conservation Biology, 12, 665–675.

    Google Scholar 

  • Frankel OH, Soulé ME (1981) Conservation and Evolution. Cambridge University Press, New York, NY, USA.

    Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. In: Conservation Biology: An Evolutionary Approach (eds. Soulé ME, Wilcox, BA), pp. 135–149. Sinauer, Sunderland, MA.

    Google Scholar 

  • Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential? Animal Conservation, 1, 69–73.

    Google Scholar 

  • Gaggiotti OE, Lange O, Rassmann K, Gliddon CA (1999) Comparison of two indirect methods for estimating average levels of gene flow using microsatellite data. Mol. Ecol., 8, 1513–1520.

    PubMed  Google Scholar 

  • Goodman SJ (1997) RstCalc: a collection of computer programs for calculating estimates of genetic differentiation from microsatellite data and determining their significance. Mol. Ecol., 6, 881–885.

    Google Scholar 

  • Griffiths R, Double MCY, Orr K, Dawson RJG (1998) A DNA test to sex most birds. Mol. Ecol., 7, 1071–1075.

    PubMed  Google Scholar 

  • Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 48, 361–372.

    PubMed  Google Scholar 

  • Haig SM, Grattto-Trevor CL, Mullins TD, Colwell MA (1997) Population identification of western hemisphere shorebirds throughout the annual cycle. Mol. Ecol., 6, 412–427.

    Google Scholar 

  • Hartl DL, Clarl AG (1989) Principles of Population Genetics. Sinauer Associates Inc, Sunderland, MA.

    Google Scholar 

  • Hedgecock D, Sly F (1990) Genetic drift and effective population sizes of hatchery-propagated stocks of the Pacific oyster, Crassostrea gigas. Aquaculture, 88, 21–38.

    Google Scholar 

  • Houlden BA, England PR, Taylor AC, Greville WD (1996) Low genetic variability of the koala Phascolarctos cinereus in southeastern Australia following a severe population bottleneck. Mol. Ecol., 5, 269–281.

    PubMed  Google Scholar 

  • Lande R, Barrowclough GF (1987) Effective population size, genetic variation, and their use in population management. In: Viable Populations for Conservation. (ed. Soulé ME), pp. 87–123. Cambridge University Press, New York.

    Google Scholar 

  • Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution, 46, 477–494.

    Google Scholar 

  • Lens L, Adriaensen F, Matthysen E (1999a) Dispersal studies in recently and historically fragmented forests-a comparison between Kenya and Belgium. In: Proc. 22nd Int. Ornithol. Congr., Durban (eds. Adams N, Slotow R) pp. 2480–2491. University of Natal, Natal.

    Google Scholar 

  • Lens L, Galbusera P, Brooks T, Waiyaki E, Schenck T (1998) Highly skewed sex ratios in the critically endangered Taita Thrush as revealed by CHD genes. Biodiversity and Conservation, 7, 869–873.

    Google Scholar 

  • Lens L, Van Dongen S (1999) Evidence for organism-wide asymmetry in five bird species of a fragmented afrotropical forest. Proc. R. Soc. Lond. B., 266, 1055–1060.

    Google Scholar 

  • Lens L, Van Dongen S, Wilder CM, Brooks TM, Matthysen E (1999b) Fluctuating asymmetry increases with habitat disturbance in seven bird species of a fragmented afrotropical forest. Proc. R. Soc. Lond. B., 266, 1241–1246.

    Google Scholar 

  • Lewis PO, Zaykin D (1999) Genetic Data Analysis: Computer Program for the Analysis of Allelic Data. Version 1.0 (d12). Free program distributed by the authors over the internet from the GDA Home Page at <http://chee.unm.edu/gda/>

  • Li Shou-Hsien, Yi-Jiun Huang, Brown JL (1997) Isolation of tetranuleotide microsatellites from the Mexican jay Aphelocoma ultramarina. Mol. Ecol., 6, 499–501.

    PubMed  Google Scholar 

  • Lovett J (1985) Moist forests of Eastern Tanzania. Swara, 8, 8–9.

    Google Scholar 

  • Luikart G, England PR (1999) Statistical analysis of microsatellite DNA data. TREE, 14, 253–256.

    PubMed  Google Scholar 

  • McCommas SA, Bryant EH (1990) Loss of electrophoretic variation in serially bottlenecked populations. Heredity, 64, 315–321.

    PubMed  Google Scholar 

  • McDonald DB, Potts W(1994) Cooperative display and relatedness among males in a lek-mating bird. Science, 266, 1030–1032.

    PubMed  Google Scholar 

  • Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conservation Biology, 10, 1509–1518.

    Google Scholar 

  • Nei M, Graur D (1984) Extent of protein polymorphism and the neutral mutation theory. Evolutionary Biology, 17, 73–118.

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1–10.

    Google Scholar 

  • Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference for microsatellite loci. Genetics, 142, 1061–1064.

    PubMed  Google Scholar 

  • Petren K (1998) Microsatellite primers from Geospiza fortis and cross-species amplification in Darwin's finches. Mol. Ecol., 7, 1771–1788.

    PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics (in press).

  • Rannala B, Mountain J (1997) Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. USA, 94, 9197–9201.

    PubMed  Google Scholar 

  • Raymond M, Rousset (1995a) Genepop (Version1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity, 86, 248–249.

    Google Scholar 

  • Raymond M, Rousset F (1995b) An exact test for population differentiation. Evolution, 49, 1280–1283.

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution, 43, 223–225.

    Google Scholar 

  • Saino N, Primmer CR, Ellegren H, Pape Moller A (1997) An experimental study of paternity and tail ornamentation in the barn swallow (Hirundo rustica). Evolution, 51, 562–570.

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. pp. 9.14–9.23. Cold Spring Harbour Press, New York

    Google Scholar 

  • Schonewald-Cox CM, Chambers SM, Mac-Bryde B, Thomas, WL (1983) Genetics and Conservation: A Reference for Managing Wild Animal and Plant Populations. Benjamin Cummings, Menlo Park, CA.

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (1999) Arlequin ver. 2.0: A Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

    Google Scholar 

  • Simberloff, DS (1988) The contribution of population and community biology to conservation science. Annu. Rev. Syst. Ecol., 19, 473–511.

    Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457–462.

    PubMed  Google Scholar 

  • Tarr CL, Fleischer RC (1999) Population boundaries and genetic diversity in the endangered Mariana crow (Corvus kubaryi). Mol. Ecol., 8, 941–949.

    PubMed  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10, 506–513.

    PubMed  Google Scholar 

  • Waser PM, Strobeck C (1998) Genetic signatures of interpopulation dispersal. TREE, 13, 43–44.

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    Google Scholar 

  • Wilder CM, Brooks TM, Lens L (1999) Vegetation structure and composition of the Taita Hills forests. J. E. Afr. Nat. Hist. Soc. (in press).

  • Wright S (1931) Evolution in Mendelian populations. Genetics, 16, 97–259.

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. Annals of Eugenics, 15, 323–354.

    Google Scholar 

  • Wright S (1977) Evolution and the Genetics of Populations. Univ. of Chicago Press, Chicago.

    Google Scholar 

  • Zimmerman DA, Turner DA, Pearson DJ (1996) Birds of Kenya and northern Tanzania. Christopher Helm, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Galbusera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galbusera, P., Lens, L., Schenck, T. et al. Genetic variability and gene flow in the globally, critically-endangered Taita thrush. Conservation Genetics 1, 45–55 (2000). https://doi.org/10.1023/A:1010184200648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010184200648

Navigation