Skip to main content
Log in

Review of the Space Mapping Approach to Engineering Optimization and Modeling

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

We review the Space Mapping (SM) concept and its applications in engineering optimization and modeling. The aim of SM is to avoid computationally expensive calculations encountered in simulating an engineering system. The existence of less accurate but fast physically-based models is exploited. SM drives the optimization iterates of the time-intensive model using the fast model. Several algorithms have been developed for SM optimization, including the original SM algorithm, Aggressive Space Mapping (ASM), Trust Region Aggressive Space Mapping (TRASM) and Hybrid Aggressive Space Mapping (HASM). An essential subproblem of any SM based optimization algorithm is parameter extraction. The uniqueness of this optimization subproblem has been crucial to the success of SM optimization. Different approaches to enhance the uniqueness are reviewed. We also discuss new developments in Space Mapping-based Modeling (SMM). These include Space Derivative Mapping (SDM), Generalized Space Mapping (GSM) and Space Mapping-based Neuromodeling (SMN). Finally, we address open points for research and future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. L. Abdel-Malek and J. W. Bandler, “Yield optimization for arbitrary statistical distributions, Part I: Theory,” IEEE Trans. Circuits Syst. vol. CAS-27, pp. 245-253, 1980a.

    Google Scholar 

  • H. L. Abdel-Malek and J. W. Bandler, “Yield optimization for arbitrary statistical distributions, Part II: Implementation,” IEEE Trans. Circuits Syst. vol. CAS-27, pp. 253-262, 1980b.

    Google Scholar 

  • N. Alexandrov, J. E. Dennis, Jr., R. M. Lewis, and V. Torczon, “A trust region framework for managing the use of approximation models in optimization,” Structural Optimization vol. 15, pp. 16-23, 1998.

    Google Scholar 

  • M. H. Bakr, J. W. Bandler, R. M. Biernacki, and S. H. Chen, “Design of a three-section 3:1 microstrip transformer using aggressive space mapping,” Report SOS-97-1-R, Simulation Optimization Systems Research Laboratory, McMaster University, Hamilton, Canada, 1997.

    Google Scholar 

  • M. H. Bakr, J. W. Bandler, R. M. Biernacki, S. H. Chen, and K. Madsen, “A trust region aggressive space mapping algorithm for EM optimization,” IEEE Trans. Microwave Theory Tech. vol. 46, pp. 2412-2425, 1998.

    Google Scholar 

  • M. H. Bakr, J. W. Bandler, and N. Georgieva, “Modeling of microwave circuits exploiting space derivative mapping,” IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, 1999a, pp. 715-718.

  • M. H. Bakr, J. W. Bandler, and N. Georgieva, “An aggressive approach to parameter extraction,” IEEE Trans. Microwave Theory Tech. vol. 47, pp. 2428-2439, 1999b.

    Google Scholar 

  • M. H. Bakr, J. W. Bandler, N. Georgieva, and K. Madsen, “A hybrid aggressive space mapping algorithm for EM optimization,” IEEE Trans. Microwave Theory Tech. vol. 47, pp. 2440-2449, 1999c.

    Google Scholar 

  • M. H. Bakr, J. W. Bandler, M. A. Ismail, J. E. Rayas-Sánchez, and Q. J. Zhang, “Neural space mapping optimization of EM microwave structures,” IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, 2000a, pp. 879-882.

  • M. H. Bakr, J.W. Bandler, K. Madsen, J. E. Rayas-Sánchez, and J. Søndergaard, “Space mapping optimization of microwave circuits exploiting surrogate models,” IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, 2000b, pp. 1785-1788.

  • J. W. Bandler, “Optimization of design tolerances using nonlinear programming,” J. Optimization Theory and Applications vol. 14, pp. 99-114, 1974.

    Google Scholar 

  • J. W. Bandler and H. L. Abdel-Malek, “Optimal centering, tolerancing and yield determination via updated approximations and cuts,” IEEE Trans. Circuits Syst. vol. CAS-25, pp. 853-871, 1978.

    Google Scholar 

  • J. W. Bandler, M. H. Bakr, N. Georgieva, M. A. Ismail, and D. G. Swanson. Jr., “Recent results in electromagnetic optimization of microwave components, including microstrip T-junctions,” in Proc. 15th Annual Review of Progress in Applied Computational Electromagnetics ACES 99, Monterey, CA, 1999a, pp. 326-333.

  • J. W. Bandler, M. H. Bakr, and J. E. Rayas-Sánchez, “Accelerated optimization of mixed EM/circuit structures,” in Proc. Workshop on Advances in Mixed Electromagnetic Field and Circuit Simulation, IEEE MTT-S Int. Microwave Symp., Anaheim, CA, 1999b.

  • J. W. Bandler, R. M. Biernacki, and S. H. Chen, “Fully automated space mapping optimization of 3D structures,” IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, CA, 1996, pp. 753-756.

  • J. W. Bandler, R. M. Biernacki, S. H. Chen, W. J. Gestinger, P. A. Grobelny, C. Moskowitz, and S. H. Talisa, “Electromagnetic design of high-temperature superconducting filters,” Int. J. Microwave and Millimeter-Wave Computer-Aided Engineering vol. 5, pp. 331-343, 1995a.

    Google Scholar 

  • J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H. Hemmers, “Exploitation of coarse grid for electromagnetic optimization,” IEEE MTT-S Int. Microwave Symp. Dig., San Diego, CA, 1994a, pp. 381-384.

  • J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H. Hemmers, “Space mapping technique for electromagnetic optimization,” IEEE Trans. Microwave Theory Tech. vol. 42, pp. 2536-2544, 1994b.

    Google Scholar 

  • J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, C. Moskowitz, and S. H. Talisa, “Electromagnetic design of high-temperature superconducting filters,” IEEE MTT-S Int. Microwave Symp. Dig., San Diego, CA, 1994c, pp. 993-996.

  • J. W. Bandler, R. M. Biernacki, S. H. Chen, R. H. Hemmers, and K. Madsen, “Electromagnetic optimization exploiting aggressive space mapping,” IEEE Trans. Microwave Theory Tech. vol. 43, pp. 2874-2882, 1995b.

    Google Scholar 

  • J. W. Bandler, R. M. Biernacki, S. H. Chen, and Y. F. Huang, “Design optimization of interdigital filters using aggressive space mapping and decomposition,” IEEE Trans. Microwave Theory Tech. vol. 45, pp. 761-769, 1997a.

    Google Scholar 

  • J. W. Bandler, R. M. Biernacki, S. H. Chen, and D. Omeragi?, “Space mapping optimization of waveguide filters using finite element and mode-matching electromagnetic simulators,” IEEE MTT-S Int. Microwave Symp. Dig., Denver, CO, 1997b, pp. 635-638.

  • J.W. Bandler, R.M. Biernacki, S. H. Chen, and Q. H.Wang, “Multiple space mapping EM optimization of signal integrity in high-speed digital circuits,” in Proc. 5th Int. Workshop on Integrated Nonlinear Microwave and Millimeterwave Circuits, Duisburg, Germany, 1998, pp. 138-140.

  • J. W. Bandler, R. M. Biernacki, S. H. Chen, S. Ye, and P. A. Grobelny, “Multilevel multidimensional quadratic modeling for yield-driven electromagnetic optimization,” IEEE MIT-S Int. Microwave Symp. Dig., Atlanta, GA, 1993a, pp. 1017-1020.

  • J. W. Bandler and C. Charalambous, “Practical least pth optimization of networks,” IEEE Trans. Microwave Theory Tech. vol. MTT-20, pp. 834-840, 1972.

    Google Scholar 

  • J. W. Bandler and S. H. Chen, “Circuit optimization: The state of the art,” IEEE Trans. Microwave Theory Tech. vol. 36, pp. 424-443, 1988a.

    Google Scholar 

  • J. W. Bandler, S. H. Chen, R. M. Biernacki, L. Gao, K. Madsen, and H. Yu, “Huber optimization of circuits: A robust approach,” IEEE Trans. Microwave Theory Tech. vol. 41, pp. 2279-2287, 1993b.

    Google Scholar 

  • J. W. Bandler, S. H. Chen, and S. Daijavad, “Microwave device modeling using efficient ?1 optimization: A novel approach,” IEEE Trans. Microwave Theory Tech. vol. MTT-34, pp. 1282-1293, 1986a.

    Google Scholar 

  • J. W. Bandler, S. H. Chen, S. Daijavad, W. Kellermann, M. Renault, and Q. J. Zhang, “Large scale minimax optimization of microwave multiplexers,” in Proc. European Microwave Conf., Dublin, Ireland, 1986b, pp. 435-440.

  • J.W. Bandler, S. H. Chen, and K. Madsen, “An algorithm for one-sided ? 1 optimization with application to circuit design centering,” in Proc. IEEE Int. Symp. Circuits Syst., Espoo, Finland, 1988b, pp. 1795-1798.

  • J. W. Bandler, N. Georgieva, M. A. Ismail, J. E. Rayas-S´anchez, and Q. J. Zhang, “A generalized space mapping tableau approach to device modeling,” in Proc. 29th European Microwave Conf., Munich, Germany, vol. 3, 1999c, pp. 231-234.

  • J. W. Bandler, M. A. Ismail, J. E. Rayas-Sánchez, and Q. J. Zhang, “Neuromodeling of microwave circuits exploiting space mapping technology,” IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, 1999d, pp. 149-152.

  • J. W. Bandler, M. A. Ismail, J. E. Rayas-Sánchez, and Q. J. Zhang, “Neuromodeling of microwave circuits exploiting space mapping technology,” IEEE Trans. Microwave Theory Tech. vol. 47, pp. 2417-2427, 1999e.

    Google Scholar 

  • J. W. Bandler, W. Kellermann, and K. Madsen, “A superlinearly convergent minimax algorithm for microwave circuit design,” IEEE Trans. Microwave Theory Tech. vol. MTT-33, pp. 1519-1530, 1985a.

    Google Scholar 

  • J. W. Bandler, W. Kellermann, and K. Madsen, “A nonlinear ? 1 optimization algorithm for design, modeling and diagnosis of networks,” IEEE Trans. Circuits Syst. vol. CAS-34, pp. 174-181, 1987.

    Google Scholar 

  • J. W. Bandler, P. C. Liu, and H. Tromp, “Anonlinear programming approach to optimal design centering, tolerancing and tuning,” IEEE Trans. Circuits Syst. vol. CAS-23, pp. 155-165, 1976.

    Google Scholar 

  • J. W. Bandler and K. Madsen, “Space mapping for optimal engineering design,” in 19th IFIP TC7 Conference on System Modelling and Optimization Abstracts, Cambridge, UK, 1999f, p. 34.

  • J. W. Bandler and M. R. M. Rizk, “Optimization of electrical circuits,” Math. Program. Study vol. 11, pp. 1-64, 1979.

    Google Scholar 

  • J. W. Bandler and A. E. Salama, “Fault diagnosis of analog circuits,” Proc. IEEE, vol. 73, pp. 1279-1325, 1985b.

    Google Scholar 

  • S. Bila, D. Baillargeat, S. Verdeyme, and P. Guillon, “Automated design of microwave devices using full em optimization method,” IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, 1998, pp. 1771-1774.

  • A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset, “A rigorous framework for optimization of expensive functions by surrogates,” Structural Optimization vol. 17, pp. 1-13, 1999.

    Google Scholar 

  • C. G. Broyden, “A class of methods for solving nonlinear simultaneous equations,” Math. Comp. vol. 19, pp. 577-593, 1965.

    Google Scholar 

  • C. G. Broyden, “Quasi-Newton methods and their application to function minimization,” Math. Comp. vol. 21, pp. 368-381, 1967.

    Google Scholar 

  • P. Burrascano and M. Mongiardo, “A review of artificial neural networks applications in microwave CAD,” Int. J. RF and Microwave CAE vol. 9, pp. 158-174, 1999. Special Issue on Applications ofANNto RF and Microwave, Design.

    Google Scholar 

  • C. Charalambous, “Minimax design of recursive digital filters,” Computer Aided Design vol. 6, pp. 73-81, 1974.

    Google Scholar 

  • C. Charalambous, “Nonlinear least pth optimization and nonlinear programming,” Math. Program. vol. 12, pp. 195-225, 1977.

    Google Scholar 

  • W. C. Davidon, “Variable metric method for minimization,” Rep. ANL-5900 Rev., Argonne National Laboratories, Argonne, IL, 1959.

    Google Scholar 

  • J. E. Dennis, Jr. and J. J. Moré, “Quasi-Newton methods, motivation and theory,” SIAM Rev. vol. 19, pp. 46-89, 1977.

    Google Scholar 

  • J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall: New Jersey, 1983.

    Google Scholar 

  • J. E. Dennis, Jr. and V. Torczon, “Managing approximation models in optimization,” Technical Report 95-19, Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005-1892, 1995.

    Google Scholar 

  • H. Ekblom and K. Madsen, “Algorithms for nonlinear Huber estimation,” BIT vol. 29, pp. 60-76, 1989. em TM, Sonnet Software, Inc., 1020 Seventh North Street, Suite 210, Liverpool, NY 13088, 1997.

    Google Scholar 

  • J. Hald and K. Madsen, “Combined LP and quasi-Newton methods for minimax optimization,” Math. Program. vol. 20, pp. 49-62, 1981.

    Google Scholar 

  • J. Hald and K. Madsen, “Combined LP and quasi-Newton methods for nonlinear ?1 optimization,” SIAM J. Numer Anal. vol. 22, pp. 68-80, 1985.

    Google Scholar 

  • HP Empipe3DTM Version 5.2, Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, 1998.

  • HP HFSSTM Version 5.2, Agilent Technologies, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799, 1998.

  • P. Huber, Robust Statistics, Wiley: New York, 1981.

    Google Scholar 

  • K. Levenberg, “A method for the solution of certain problems in least squares,” Quart. Appl. Math. vol. 2, pp. 164-168, 1944.

    Google Scholar 

  • K. Madsen, “An algorithm for minimax solution of overdetermined systems of non-linear equations,” J. Inst. Math. Appl. vol. 16, pp. 321-328, 1975a.

    Google Scholar 

  • K. Madsen and H. Schjær-Jacobsen, “Singularities in minimax optimization of networks,” IEEE Trans. Circuits and Syst. vol. CAS-23, pp. 456-460, 1976.

    Google Scholar 

  • K. Madsen, H. Schjaer-Jacobson, and J. Voldby, “Automated minimax design of networks,” IEEE Trans. Circuits Syst. vol. CAS-22, pp. 791-796, 1975b.

    Google Scholar 

  • N. Marcuvitz, Waveguide Handbook, 1st edn. McGraw-Hill: New York, 1951, p. 221.

    Google Scholar 

  • D. Marquardt, “An algorithm for least-squares estimation of non-linear parameters,” SIAM J. Appl. Math. vol. 11, pp. 431-441, 1963.

    Google Scholar 

  • G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Network and Coupling Structures, 1st edn. McGraw-Hill: New York, 1964.

    Google Scholar 

  • J. J. Moré, “Recent developments in algorithms and software for trust region methods,” Mathematical Programming, the State of the Art, Springer Verlag, 1982, pp. 258-287.

  • J. J. Moré and D. C. Sorenson, “Computing a trust region step,” SIAM J. Sci. Stat. Comp. vol. 4, pp. 553-572, 1983.

    Google Scholar 

  • W. Murray and M. L. Overton, “A projected Lagrangian algorithm for nonlinear ? 1 optimization,” SIAM J. Scient. Stat. Comp. vol. 2, pp. 207-224, 1981.

    Google Scholar 

  • OSA90/hopeTM Version 4.0, formerly Optimization Systems Associates Inc., P.O. Box 8083, Dundas, ON, Canada, L9H 5E7, 1997, now HP EEsof Division, 1400 Fountaingrove Parkway, Santa Rosa, CA 95403-1799. 276 BAKR ET AL.

  • M. R. Osborne and G. A. Watson, “An algorithm for minimax optimization in the nonlinear case,” Comput. J. vol. 12, pp. 63-68, 1969.

    Google Scholar 

  • M. R. Osborne and G. A. Watson, “On an algorithm for discrete nonlinear ? 1 optimization,” Comput. J. vol. 14, pp. 184-188, 1971.

    Google Scholar 

  • A. M. Pavio, “The electromagnetic optimization of microwave circuits using companion models,” in Proc. Workshop on Novel Methodologies for Device Modeling and Circuit CAD, IEEE MTT-S Int. Microwave Symp., Anaheim, CA, 1999.

  • G. C. Temes and D. Y. F. Zai, “Least pth approximation,” IEEE Trans. Circuit Theory vol. CT-16, pp. 235-237, 1969.

    Google Scholar 

  • V. Torczon and M. W. Trosset, “Using approximations to accelerate engineering design optimization,” Technical Report 98-33, ICASE, Langley Research Center, Hampton, Virginia 23681-2199, 1998.

    Google Scholar 

  • M. W. Trosset and V. Torczon, “Numerical optimization using computer experiments,” Technical Report 97-38, ICASE, NASA Langley Research Center, Hampton, Virginia 23681-2199, 1997.

    Google Scholar 

  • A. D. Waren, L. S. Lasdon, and D. F. Suchman, “Optimization in engineering design,” Proc. IEEE vol. 55, pp. 1885-1897, 1967.

    Google Scholar 

  • P. Watson and K. C. Gupta, “EM-ANN models for microstrip vias and interconnects in multilayer circuits,” IEEE Trans. Microwave Theory Tech. vol. 44, pp. 2495-2503, 1996.

    Google Scholar 

  • L. Young and B. M. Schiffman, “A useful high-pass filter design,” Microwave J. vol. 6, pp. 78-80, 1963.

    Google Scholar 

  • A. H. Zaabab, Q. J. Zhang, and M. S. Nakhla, “A neural network modeling approach to circuit optimization and statistical design,” IEEE Trans. Microwave Theory Tech. vol. 43, pp. 1349-1358, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakr, M.H., Bandler, J.W., Madsen, K. et al. Review of the Space Mapping Approach to Engineering Optimization and Modeling. Optimization and Engineering 1, 241–276 (2000). https://doi.org/10.1023/A:1010000106286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010000106286

Navigation