Skip to main content
Log in

Synthesis, Microstructure and Electrical Properties of Hydrothermally Prepared Ferroelectric BaTiO3 Thin Films

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Thin films of polycrystalline, tetragonal BaTiO3 on oxidized Ti metal substrates were synthesized at 240°C under hydrothermal conditions. Microstructure and electrical properties of the films generated over a four week period of synthesis formed the focus of this study. The films displayed a smooth and shiny surface with a relatively dense structure and no observable cracks. Film thickness reached 0.5 μm after two weeks of synthesis and thereafter remained constant. Diameters of the grains on the film surface were in the range of 1∼2 μm. It is proposed that initial formation of the BaTiO3 film occurs by reaction of Ba2+ with solubilized titanium oxide on the Ti metal surface followed at later stages by an in-situ growth via reaction of TiOx with Ba2+ diffusing through the BaTiO3 film. X-ray diffraction and Raman spectroscopy indicated that the BaTiO3 films are tetragonal, and the films exhibited typical ferroelectric hysteresis loops at room temperature. However, no evidence of the dielectric anomaly (Curie transition) between 30 and 200°C was observed. Dielectric constant of the films at 1 kHz at room temperature was between 400–500. Both dielectric constant and tanδ exhibited low dispersion as a function of frequency at temperatures below 150°C, and the dispersion increased with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Li, T.M. Lu, and H. Bakhru, Appl. Phys. Lett., 58, 2639 (1991)

    Google Scholar 

  2. M. Okuyama and Y. Hamakawa, Ferroelectrics, 63, 243 (1985).

    Google Scholar 

  3. D. Bondurant and F. Gnadinger, IEEE Spectrum, 7, 30 (1989).

    Google Scholar 

  4. Y. Yano, K. Iijima, Y. Daitoh, and Y. Bando, J. Appl. Phys., 76, 7833 (1994).

    Article  Google Scholar 

  5. O. Auciello, A.I. Kingon, and S.B. Krupanidhi, Mater. Res. Bull., 21(6), 25 (1996).

    Google Scholar 

  6. M. De Keijser and G.J.M. Dormans, Mater. Res. Bull., 21(6), 37 (1996).

    Google Scholar 

  7. D.L. Kaiser, M.D. Vaudin, G. Gillen, C.S. Hwang, L.H. Robins, and L.D. Rotter, J. Cryst. Growth, 137, 136 (1994).

    Google Scholar 

  8. T. Hayashi, N. Ohji, K. Hirohara, T. Fukunaga, and H. Maiwa, Jpn. J. Appl. Phys., 32, 4092 (1993).

    Google Scholar 

  9. M.N. Kamalasanan, N.D. Kumar, and S.J. Chandra, Appl. Phys., 74, 5679 (1993).

    Google Scholar 

  10. M.H. Frey and D.A. Payne, Appl. Phys. Lett., 63, 2753 (1993).

    Google Scholar 

  11. M.N. Kamalasanan, N.D. Kumar, and S. Chandra, J. Appl. Phys., 76, 4603 (1994).

    Google Scholar 

  12. M. Yoshimura, S.E. Yoo, M. Hayashi, and N. Ishizawa, Jpn. J. Appl. Phys., 28, L 2007 (1989).

    Google Scholar 

  13. N. Ishizawa, H. Banno, M. Hayashi, S.E. Yoo, and M. Yoshimura, Jpn. J. Appl. Phys., 29, 2467 (1990).

    Google Scholar 

  14. M. Hayashi, N. Ishizawa, S.E. Yoo, and M. Yoshimura, J. Ceram. Soc. Jpn., 98, 93 (1990).

    Google Scholar 

  15. K. Kajiyoshi, N. Ishizawa, and M. Yoshimura, J. Am. Ceram. Soc., 74, 369 (1991).

    Google Scholar 

  16. M.E. Pilleux and V.M.J. Fuenzalida, Appl. Phys., 74, 4664 (1993).

    Google Scholar 

  17. P. Bendale, S. Venigalla, J.R. Ambrose, E.D. Verink, Jr., and J.H. Adair, J. Am. Ceram. Soc., 76, 2619 (1993).

    Google Scholar 

  18. R.R. Bacsa, P. Ravindranathan, and J.P. Dougherty, J. Mater. Res., 7, 423 (1992).

    Google Scholar 

  19. R.R. Basca and J.P. Dougherty, J. Mater. Sci. Lett., 14, 600 (1995).

    Google Scholar 

  20. E. Shi, C.R. Cho, M.S. Jang, S.Y. Jeong, and H.J. Kim, J. Mater. Res., 9, 2914 (1994).

    Google Scholar 

  21. A.T. Chien, J.S. Speck, F.F. Lange, A.C. Daykin, and C.G. Levi, J. Mater. Res., 10, 1784 (1995).

    Google Scholar 

  22. K. Osseo-Asare, F.J. Arriagada, and J.H. Adair, Cer. Tans., Ceramic Powder Sci. IV, 20, edited by Messing, G. L., Fuller, Jr., E. R. and Hausner, H. The American Ceramic Society, Westerville, OH, p47, 53 (1988).

    Google Scholar 

  23. W. Hertl, J. Am. Ceram. Soc., 71, 879 (1988).

    Google Scholar 

  24. N.A. Ovramenko, L.I. Shvets, F.S. Ovcharenko, and B.Y. Komilovich, Izv. Akad. Nauk SSSR, Neorg. Mater., 15, 1982 (1979).

    Google Scholar 

  25. P.K. Dutta, R. Asiaie, S.A. Akbar, and W. Zhu, Chem. Mater., 6, 1542 (1994).

    Google Scholar 

  26. R. Asiaie, W. Zhu, P.K. Dutta, and S.A. Akbar, Chem. Mater., 8, 226 (1996).

    Google Scholar 

  27. M. DiDomenico, Jr., S.H. Wemple, S.P.S. Porto, and R.P. Bauman, Phys. Rev., 174, 522 (1968).

    Google Scholar 

  28. G. Burns and B.A. Scott, Phys. Rev., B7, 3088 (1973).

    Google Scholar 

  29. K. Shimomura, T. Tsurumi, Y. Ohba, and M. Daimon, Jap. J. Appl. Phys., 30, 2174 (1991).

    Google Scholar 

  30. A.J. Mountvala, J. Am. Ceram. Soc., 54, 544 (1971).

    Google Scholar 

  31. C.R. Cho, E. Shi; M.S. Jang, S.Y. Jeong, and S.C. Kim, Jap. J. Appl. Phys., 33, 4984 (1994).

    Google Scholar 

  32. J.O. Eckert, C.C. Hung-Houston, B.L. Green, M.M. Lencka, and R.E. Riman, J. Am. Ceram. Soc., 79, 2929 (1996).

    Google Scholar 

  33. J.R. Slack and J.C. Burfoot, J. Phys. C: Solid State Phys., 4, 898 (1971).

    Google Scholar 

  34. T.R.N. Kutty and P. Padmini, Mater. Chem. Phys., 39, 200 (1995).

    Google Scholar 

  35. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford (1977).

    Google Scholar 

  36. R.E. Newnham, K.R. Udayakumar, and S.T. Mckinstry, Chemical Processing of Advanced Materials, John Wiley & Sons, 379 (1992).

  37. S.B. Desu, Phys. Stat. Solid., A141, 119 (1994).

    Google Scholar 

  38. T. Hayashi, N. Ohji, and H. Maiwa, Jpn. J. Appl. Phys., 33, 5277 (1994).

    Google Scholar 

  39. S.V. Birykov, V.M. Mukhortov, A.M. Margolin, Y.I. Golovko, I.N. Zakharchenko, V.P. Dudkevich, and E.G. Fesenko, Ferroelectrics, 56, 115 (1984).

    Google Scholar 

  40. I.P. Batra, P. Wurfel, and B.D. Silverman, Phys. Rev., 8, 3257 (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Akbar, S., Asiaie, R. et al. Synthesis, Microstructure and Electrical Properties of Hydrothermally Prepared Ferroelectric BaTiO3 Thin Films. Journal of Electroceramics 2, 21–31 (1998). https://doi.org/10.1023/A:1009954723222

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009954723222

Navigation