Skip to main content
Log in

Oxide Thin Films for Tunable Microwave Devices

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Oxide thin films have been studied for frequency and phase agile electronics. The electric-field tuning of microwave devices employs ferroelectrics, while the Magnetic-field tuning uses ferrites. The critical material parameters for ferroelectric thin films are the tunability of the dielectric constant and the dielectric loss. This paper describes the current understanding of the fundamental mechanisms of these properties and the research efforts to improve them in ferroelectric thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Van Duzer, IEEE Trans. Appl. Supercond., 7, 98 (1997).

    Google Scholar 

  2. F.A. Miranda, C.H. Mueller, G.A. Koepf, and R.M. Yandrofski, Supercond. Sci. Technol., 8, 755 (1995).

    Google Scholar 

  3. C.M. Jackson, J.H. Kobayashi, A. Lee, C. Pettiette-Hall, and J.F. Burch, Microw. Opt. Techn. Lett., 5, 722 (1992).

    Google Scholar 

  4. V.K. Varadan, V.V. Varadan, K.A. Jose, and J.F. Kelly, Smart Mater. Struct., 3, 470 (1994).

    Google Scholar 

  5. M.A. Saifi and L.E. Cross, Phys. Rev. B, 123, 2 (1970).

    Google Scholar 

  6. G.F. Dionne and D.E. Oates, IEEE trans. Magn., 33, 3421 (1997).

    Google Scholar 

  7. A.R. von Hippel, Dielectrics and Waves (Artech House, Boston, 1995).

    Google Scholar 

  8. A.T. Findikoglu, Q.X. Jia, X.D. Wu, G.J. Chen, T. Venkatesan, and D. Reagor, Appl. Phys. Lett., 68, 1651 (1996).

    Google Scholar 

  9. R.S. Kwok, S.J. Fiedziuszko, F.A. Miranda, G.V. Leon, M.S. Demo, and D.Y. Bohman, IEEE Trans. Appl. Supercond., 7, 3706 (1997).

    Google Scholar 

  10. G. Subramanyam, F.V. Keuls, and F.A. Miranda, Microwave and Guided Wave Lett., 8, 78 (1988).

    Google Scholar 

  11. F.W. Van Keuls, R.R. Romanofsky, D.Y. Bohman, M.D. Winters, F.A. Miranda, C.H. Mueller, R.E. Treece, T.V. Rivkin, and D. Galt, Appl. Phys. Lett, 71, 3075 (1997).

    Google Scholar 

  12. S.W. Kirchoefer, J.M. Pond, A.C. Carter, W. Chang, K.K. Agarwal, J.S. Horwitz, and D.B. Chrisey, Microw. Opt. Techn. Lett., 18, 168 (1998).

    Google Scholar 

  13. H. Jiang, private communications.

  14. G.F. Dionne, D.E. Oates, D.H. Temme, and J.A. Weiss, IEEE trans. Microw. Theory Tech., 44, 1361 (1996).

    Google Scholar 

  15. D.E. Oates and G.F. Dionne, IEEE MTT-S Inter. Microw. Symp. Digest, 1, 303 (1997).

    Google Scholar 

  16. A. Piqué, K.S. Harshavardhan, J. Moses, M. Mathur, E. Belohoubek, T. Venkatesan, E.J. Denlinger, D. Kalokitis, A. Fathy, V. Pendrick, M. Rajeswari, and W. Jiang, Appl. Phys. Lett., 67, 1778 (1995).

    Google Scholar 

  17. Q.X. Jia, A.T. Findikoglu, P. Arendt, S.R. Foltyn, J.M. Roper, J.R. Groves, J.Y. Coulter, Y.Q. Li, and G.F. Dionne, Appl. Phys. Lett, 72, 1763 (1998).

    Google Scholar 

  18. R.A. Cowley, Phys. Rev. Lett, 9, 159 (1962).

    Google Scholar 

  19. K.A. Müller and H. Burkard, Phys. Rev. B, 19, 3593 (1979).

    Google Scholar 

  20. E. Tosatti and R. Martoňák, Solid State Commun., 92, 167 (1994).

    Google Scholar 

  21. K.A. Müller, W. Berlinger, and E. Tosatti, Z. Phys. B, 92, 277 (1991).

    Google Scholar 

  22. J.M. Worlock and P.A. Fleury, Phys. Rev. Lett., 19, 1176 (1967).

    Google Scholar 

  23. A.K. Tagantsev, in Ferroelectric Ceramices N. Setter and E.L. Colla, eds., 127 (BirkhaÈuser, Basel, 1993).

    Google Scholar 

  24. V.L. Gurevich and A.K. Tagantsev, Adv. Phys., 40, 719 (1991).

    Google Scholar 

  25. R. Viana, P. Lunkenheimer, J. Hemberger, R. Böhmer, and A. Loidl, Phys. Rev. B, 50, 601 (1994).

    Google Scholar 

  26. O.G. Vendik and L.T. Ter-Martirosyan, Sov. Phys.-Solid State, 36, 1778 (1994).

    Google Scholar 

  27. K. Abe and S. Komatsu, Jap. J. of Appl. Phys., 32, L1157 (1993).

    Google Scholar 

  28. C. Zhou and D.M. Newns, J. Appl. Phys., 82, 3081 (1997).

    Google Scholar 

  29. C. Basceri, S.K. Streiffer, A.I. Kingon, and R. Waser, J. Appl. Phys., 82, 2497 (1997).

    Google Scholar 

  30. H.C. Li, W. Si, A.D. West, and X.X. Xi, Appl. Phys. Lett., 73, 464 (1998).

    Google Scholar 

  31. G.W. Dietz, W. Antpöhler, M. Klee, and R. Waser, J. Appl. Phys., 78, 6113 (1995).

    Google Scholar 

  32. G.W. Dietz and R. Waser, Thin Solid Films, 299, 53 (1997).

    Google Scholar 

  33. H.C. Li, W. Si, A.D. West, and X.X. Xi, Appl. Phys. Lett., 73, 190 (1998).

    Google Scholar 

  34. E. Fischer and E. Hegenbarth, Ferroelectrics Lett., 5, 21 (1985).

    Google Scholar 

  35. X.X. Xi, H. Li, W. Si, and A.A. Sirenko, unpublished.

  36. J.L. Servoin, Y, Luspin, and F. Gervis, Phys. Rev. B, 22, 5501 (1980).

    Google Scholar 

  37. H. Uwe and T. Sakodo, Phys. Rev. B, 13, 271 (1976).

    Google Scholar 

  38. J. Hemberger, P. Lunkenheimer, R. Viana, R. Böhmer, and A. Loidl, J. Phys.: Condens. Matter, 8, 4673 (1996).

    Google Scholar 

  39. D.E. Grupp and A.M. Goldman, Phys. Rev. Lett., 78, 3511 (1997).

    Google Scholar 

  40. J.G. Bednorz and K.A. Mlüler, Phys. Rev. B, 52, 2289 (1984).

    Google Scholar 

  41. V.I. Merkulov, J.R. Fox, H. Li, W. Si, A.A. Sirenko, and X.X. Xi, Appl. Phys. Lett., 72, 3291 (1998).

    Google Scholar 

  42. W.G. Nilsen and J.G. Skinner, J. Chem. Phys., 48, 2240 (1968).

    Google Scholar 

  43. S.K. Manlief and H.Y. Fan, Phys. Rev. B, 5, 4046 (1972).

    Google Scholar 

  44. B.O. Wells, M.V. Zimmerman, H. Nakao, S.M. Shapiro, A.M. Clark, and X.X. Xi, unpublished (1998).

  45. Q.X. Jia, A.T. Findikoglu, D. Reagor, and P. Lu, Appl. Phys. Lett., 73, 897 (1998).

    Google Scholar 

  46. M.M. Eddy, R. Hanson, M.R. Rao, and B. Zuck, Mater. Res. Soc. Symp. Proc., 474, 365 (1997).

    Google Scholar 

  47. M.J. Dalberth, R.E. Stauber, J.C. Price, C.T. Rogers, and D. Galt, Appl. Phys. Lett., 72, 507 (1998).

    Google Scholar 

  48. M.J. Dalberth, J.C. Price, and C.T. Rogers, Mater. Res. Soc. Symp. Proc., 493, 371 (1998).

    Google Scholar 

  49. M. Levy, R.M. Osgood, Jr., R. Liu, L.E. Cross, G.S. Cargill III, A. Kumar, and H. Bakhru, Appl. Phys. Lett., 73, 2293 (1993).

    Google Scholar 

  50. U. Bianchi, W. Kleemann, and J.G. Bednorz, J. Phys.: Condens. Matter, 6, 1229 (1994).

    Google Scholar 

  51. J. Toulouse, P. DiAntonio, B.E. Vugmeister, X.M. Wang, and L.A. Knaus, Phys. Rev. Lett., 68, 232 (1992).

    Google Scholar 

  52. R. Waser, in Ferroelectric Ceramics N. Setter and E.L. Colla, eds., 273 (Birkhäuser, Basel, 1993).

    Google Scholar 

  53. H. Uwe, H. Yamaguchi, and T. Sakodo, Ferrolectrics, 96, 123 (1989).

    Google Scholar 

  54. S.A. Prosandeyev and I.A. Osipenko, Phys. Stat. Sol. (b), 192, 37 (1995).

    Google Scholar 

  55. U. Fano, Phys. Rev., 124, 1866 (1961).

    Google Scholar 

  56. R.Waser and D.M. Smyth, in Ferroelectric thin films: synthesis and basic properties C.P. de Araujo, J.F. Scott, and G.W. Taylor, eds., p. 47 (Gordon and Breach Publishers, Amsterdam, 1996).

    Google Scholar 

  57. C. Fischer, C. Auf Der Horst, P. Voigt, S. Kapphan, and J. Zhao, Radiat. Eff. and Defects in Solids, 136, 85 (1995).

    Google Scholar 

  58. H. Chang, C. Gao, I. Takeuchi, Y. Yoo, J. Wang, P.G. Schultz, X.-D. Xiang, R.P. Sharma, M. Downes, and T. Venkatesan, Appl. Phys. Lett., 72, 2185 (1998).

    Google Scholar 

  59. C.H. Park and D.J. Chadi, Phys. Rev. B, 57, R13961 (1998).

    Google Scholar 

  60. T. Shimizu and H. Okushi, to appear in Phys. Rev. B (1999).

  61. M. Copel, P.R. Duncombe, D.A. Neumayer, T.M. Shaw, and R.M. Tromp, Appl. Phys. Lett., 70, 3227 (1997).

    Google Scholar 

  62. I. Takeuchi, H. Chang, C. Gao, P.G. Schultz, X. Xiang, R.P. Sharma, M. Downes, and T. Venkatesan, Appl. Phys. Lett., 73, 894 (1995).

    Google Scholar 

  63. T. Shimizu and H. Okushi, Appl. Phys. Lett., 67, 1411 (1995).

    Google Scholar 

  64. C. Gao, F. Duewer, Y. Lu, and X.-D. Xiang, Appl. Phys. Lett., 73, 1146 (1993).

    Google Scholar 

  65. C. Hubert and J. Levy, Appl. Phys. Lett., 73, 3229 (1998).

    Google Scholar 

  66. J. Krupka, R.G. Gayer, M. Kuhn, and J.H. Hinken, IEEE Trans. Microw. Theory Tech., 42, 1886 (1994).

    Google Scholar 

  67. J. Baker-Jarvis, R.G. Geyer, J.H. Grosvenor, and M.D. Janezic, Phys. Rev. Lett., 5, 571 (1998).

    Google Scholar 

  68. O. Auciello, A.R. Krauss, J. Im, D.M. Gruen, E.A. Irene R.P.H. Change, and G.E. McGuire, Appl. Phys. Lett., 69, 2671 (1996).

    Google Scholar 

  69. X.D. Zhu, H.B. Lu, G.-Z. Yang, Z.-Y. Li, B.-Y. Gu, and D.-Z. Zhang, Phys. Rev. B, 57, 2514 (1998).

    Google Scholar 

  70. X.D. Zhu, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xi, X., Li, HC., Si, W. et al. Oxide Thin Films for Tunable Microwave Devices. Journal of Electroceramics 4, 393–405 (2000). https://doi.org/10.1023/A:1009903802688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009903802688

Navigation