Skip to main content
Log in

Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050: a global model

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

The purpose of the current paper is to estimate future trends (up to the year 2050) in the global geographical distribution of nitrous oxide (N2O) emissions in rivers, estuaries, and continental shelf regions due to biological processes, particularly as they are affected by anthropogenic nitrogen (N) inputs, and to compare these to 1990 emissions. The methodology used is from Seitzinger and Kroeze (1998) who estimated 1990 emissions assuming that N2O production in these systems is related to nitrification and denitrification. Nitrification and denitrification in rivers and estuaries were related to external inputs of nitrogen to those systems. The model results indicate that between 1990 and 2050 the dissolved inorganic nitrogen (DIN) export by rivers more than doubles to 47.2 Tg N in 2050. This increase results from a growing world population, associated with increases in fertilizer use and atmospheric deposition of nitrogen oxides (NOy). By 2050, 90% of river DIN export can be considered anthropogenic. N2O emissions from rivers, estuaries and continental shelves are calculated to amount to 4.9 (1.3 – 13.0) Tg N in 2050, of which two-thirds are from rivers. Aquatic emissions of N2O are calculated to increase faster than DIN export rates: between 1990 and 2050, estuarine and river emissions increase by a factor of 3 and 4, respectively. Emissions from continental shelves, on the other hand, are calculated to increase by only 12.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcamo J, Kreileman G J J, Krol, M S & Zuidema G (1994) Modeling the global society-climate system: Part 1: model description and testing. Water, Air Soil Pollut 76: 1-35

    Google Scholar 

  • Berounsky V M & Nixon SW (1993) Rates of nitrification along an estuarine gradient in Narragansett Bay. Estuaries 16(4): 718-730

    Google Scholar 

  • Berounsky V M & Nixon SW (1985) Eutrophication and the rate of net nitrification in a coastal marine ecosystem. Estuarine, Coastal and Shelf Science 20: 773-781

    Google Scholar 

  • Billen G, Lancelot C & Meybeck M (1991) N, P and Si retention along the aquatic continuum from land to ocean. In: Mantoura R F C, Martin J M & Wollast R (eds) Ocean Margin Processes in Global Change, pp 19-44. Wiley & Sons, Chichester

    Google Scholar 

  • Billen G (1975) Nitrification in the Scheldt Estuary (Belgium and the Netherlands). Est Coast Mar Sci 3: 79-89

    Google Scholar 

  • Bouwman A F (1997) Long-term scenarios of livestock-crop-land use interactions for the assessment of environmental indicators in developing countries, Land and Water Bulletin 5. Rome: Food and Agricultural Organization of the United Nations

    Google Scholar 

  • Bouwman A F (1995) Compilation of a global inventory of emissions of nitrous oxide. Thesis Wageningen Agricultural University, Wageningen, The Netherlands. 143 pp

    Google Scholar 

  • Bouwman A F, Van der Hoek KW & Olivier J G J (1995) Uncertainties in the global sources distribution of nitrous oxide. J Geophys Res 100: 2785-2800

    Google Scholar 

  • Bouwman A F, Fung I, Matthews E & John J (1993) Global analysis of the potential for N2O production in natural soils. Global Biogeochemical Cycles 7: 557-597

    Google Scholar 

  • Caraco N F (1995) Influence of human populations on P transfers to aquatic systems: a regional scale study using large rivers. In: Tiessen H (ed) Phosphorus in the Global Environment, pp 235–244. SCOPE 54, John Wiley & Sons

  • Caraco N F & Cole J J (in press) Human impact on nitrate export: an analysis using major world rivers, Ambio

  • Christensen J P, Murray J W, Devol A H & Codispoti L A (1987) Denitrification in continental shelf sediments has a major impact on the oceanic nitrogen budget. Global Biogeochem Cycles 1: 97-116

    Google Scholar 

  • Cogley J G (1994) GGHYDRO, Global Hydrographic Data, Release 2 1. Trent Climate Note 91-1. Trent University, Canada

    Google Scholar 

  • Cole J J, Peierls B L, Caraco N F & Pace M L (1993) Nitrogen loading of rivers as a human-driven process. In: McDonnell M J & Pickett S T A (eds) Human as Components of Ecosystems, pp 141-157

  • Crutzen P J (1970) The influence of nitrogen oxides on the atmospheric ozone content. Q J R Meteorol Soc 96: 320-325

    Google Scholar 

  • Den Elzen M G J, Beusen A H W & Rotmans J (1997) An integrated modeling approach to global carbon an nitrogen cycles: Balancing their budgets. Global Biogeochem Cycles 11: 191-215

    Google Scholar 

  • De Vries H J M, Olivier J G J, Van den Wijngaardt R A, Kreileman G J J & Toet A M C (1994) Model for calculating regional energy use, industrial production and greenhouse gas emissions for evaluating global climate scenarios. Water Air Soil Pollut 76: 79-131

    Google Scholar 

  • Dentener F J & Crutzen P J (1993) Reaction of N2O5 on tropospheric aerosols: Impact on the global distribution of NOx, O3 and OH. J Geophys Res 98: 7149-7163

    Google Scholar 

  • Duce R A, Liss P S, Merill J T, Atlas E L, Buat-Menard P, Hicks B B, Miller J M, Prospero J M, Arimoto R, Church T M, Ellis W, Galloway J N, Hansen L, Jickels T D, Knap A H, Reinhardt K H, Schneider B, Soudine A, Tokos J J, Tsunogai S, Wollast R & Zhou M (1991) The atmospheric input of trace species to the world ocean. Global Biogeochem Cycles 5: 193-259

    Google Scholar 

  • Edwards M H (1986) Digital Image Processing of Local and Global Bathymetric Data. Department of Earth and Planetary Sciences, Washington University, Washington, USA

    Google Scholar 

  • Galloway J N, Schlesinger WH, Levy II V, Michaels A & Schnoor J L (1995) Nitrogen fixation: anthropogenic enhancement -environmental response. Global Biogeochem Cycles 9(2): 235-252

    Google Scholar 

  • Goreau T J, Kaplan W A, Wofsy S C, McElroy M B, Valois F W & Watson SW, Production of NO -2 and N2O by nitrifying bacteria at reduced concentrations of oxygen. Appl Env Microbiol 40(3): 526-532

  • Hahn J & Crutzen P J (1982), The role of fixed nitrogen in atmosphere photochemistry. Phil Trans R Soc Lond Ser B 296: 521-541

    Google Scholar 

  • Helder W & De Vries R T P (1983) Estuarine nitrite maxima and nitrifying bacteria (EMS-Dollard Estuary), Neth J Sea Res 17(1): 1-18

    Google Scholar 

  • Houghton J T, Callander B A & Varney S K (eds) (1992), Climate change 1992, The supplementary report to the IPCC scientific assessment, Published for the Intergovernmental Panel on Climate Change, Cambridge University Press

  • Houghton J T, Meiro Filho L G, Bruce J, Hoesung Lee, Callander B A, Haites E, Harris N & Maskell K (eds) (1995) Climate Change 1994, Radiative Forcing of Climate Change and An Evaluation of the IPCC IS92 Emission Scenarios: Reports of Working Groups I and II of the International Panel on Climate Change, Published for the Intergovernmental Panel on Climate Change, Cambridge University Press

  • Howarth R W, Billen G, Swaney D, Townsend A, Jaworski N, Downing J A, Elmgren R, Caraco N & Lajtha K (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 35: 75-139

    Google Scholar 

  • Howarth R W (this volume) An assessment of human influences on fluxes of nitrogen from the terrestrial landscape to the estuaries and continental shelves of the North Atlantic Ocean. Nutrient Cycling in Agroecosystems

  • Jensen H B, Jorgensen K S & Sorensen J (1984) Diurnal variation of nitrogen cycling in coastal, marine sediments II, Nitrous oxide emission, Marine Biol 83: 177-183

    Google Scholar 

  • Jordan T E & Weller D E (1996) Human contributions to terrestrial nitrogen flux. BioScience 46(9): 655-664

    Google Scholar 

  • Khalil M A K & Rasmussen R A (1992) The global sources of nitrous oxide. J Geophys Res 97(D13): 14651-14660

    Google Scholar 

  • Kreileman G J J & Bouwman A F (1994) Computing land use emissions of greenhouse gases. Water Air Soil Pollut 76: 231-258

    Google Scholar 

  • Kroeze C (1994) Nitrous oxide and global warming. Sci Total Environ 143: 193-209

    Google Scholar 

  • Lerner J, Matthews E & Fung I (1988) Methane emissions from animals: a global high-resolution database. Global Biogeochem Cycles 3: 281-288

    Google Scholar 

  • Lipschultz F, Wofsy S C & Fox L E (1986) Nitrogen metabolism of the eutrophic Delaware River ecosystem, Limnol Oceanogr 31(4): 701-716

    Google Scholar 

  • Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282: 401-450

    Google Scholar 

  • Michaels A F, Olson D, Sarmiento J L, Ammerman J W, Fanning K, Jahnke R, Knap A H, Lipschultz F & Prospero J M (1996) Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean. Biogeochemistry 35: 181-226

    Google Scholar 

  • Matthews E (1994) Nitrogenous fertilizers: global distribution of consumption and associated emissions of nitrous oxide and ammonia. Global Biogeochem Cycles 8: 411-439

    Google Scholar 

  • Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S & van Cleemput O (this volume) Closing the global atmospheric budget: nitrous oxide emissions through the agricultural nitrogen cycle. (OECD/IPCC/IEA Phase II Development of IPCC Guidelines for National Greenhouse Gas Inventories)

  • Nevison C D, Esser G & Holland E A (1996), A global model of changing N2O emissions from natural and perturbed soils. Climatic Change 32: 327-378

    Google Scholar 

  • Nielsen L P & Rasmussen R (1995) Estuarine nitrogen retention independently estimated by the denitrification and mass balance methods: a study of Norsminde Fjord, Denmark. Mar Ecol Prog Ser 119: 275-283

    Google Scholar 

  • Nishio T, Koike I & Hatorri A (1983) Estimates of denitrification and nitrification in coastal and estuarine sediments. Appl Environ Microbiol 45: 444-450

    Google Scholar 

  • Nixon S W Ammerman J W Atkinson L P, Berounsky V M, Billen, Boicourt W C, Boynton W R, Church T M, DiToro D M, Elmgren R, Garber J H, Giblin A E, Jahnke R A, Owens N J P, Pilson M E Q & Seitzinger S P (1996) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35: 141-180

    Google Scholar 

  • Olivier J G J, Bouwman A F, Van der Maas C W M, Berdowski J J M, Veldt C, Bloos J P J, Visschedijk A J H, Zandveld P Y J & Haverlag J L (1996) Description of EDGAR Version 2 o: A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1x1 degree grid, RIVM Report no 771060002 / TNO-MEP Report no R96/119, National Institute for Public Health and the Environment, Bilthover, The Netherlands

    Google Scholar 

  • Olson R J (1981) Differential photoinhibition of marine nitrifying bacteria: a possible mechanism for the formation of the primary nitrite maximum. J Mar Res 39: 227-238

    Google Scholar 

  • Owens N J P (1986) Estuarine nitrification: A naturally occurring fluidized bed reaction? Estuarine, Coastal and Shelf Science 22: 31-44

    Google Scholar 

  • Peierls B L, Caraco N F, Pace M L & Cole J J (1991) Human influence on river nitrogen. Nature 350: 386-387

    Google Scholar 

  • Priscu J C, Downes M T & McKay C P (1996) Extreme supersaturation of nitrous oxide in a non-ventilated antarctic lake. Limnol Oceanogr 41: 1544-1551

    Google Scholar 

  • Seitzinger S P & Kroeze C (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems, Global Biogeochemical Cycles 12(1): 93-113

    Google Scholar 

  • Seitzinger S P (1990) Denitrification in aquatic sediments. In: Revsbech N P & Sorensen J (eds) Denitrification in Soil and Sediment, pp 301-312. Plenum Press, New York

    Google Scholar 

  • Seitzinger S P (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance, Limnol Oceanogr 33(4, part 2): 702-724

    Google Scholar 

  • Seitzinger S P & Giblin A E (1996) Estimating denitrification in North Atlantic Continental Shelf sediments. Biogeochemistry 35: 235-260

    Google Scholar 

  • Seitzinger S P, Nixon S W & Pilson M E Q (1984) Denitrification and nitrous oxide production in a coastal marine ecosystem. Limnol Oceanogr 29: 73-83

    Google Scholar 

  • Seitzinger S P & Nixon S W (1985) Eutrophication and the rate of denitrification and N2O production in coastal marine sediments, Limnol Oceanogr 30: 1332-1339 United Nations (1996) Country population statistics and projections 1950-2050. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Vitousek, P M & Matson P A (1993) Agriculture, the global nitrogen cycle and trace gas flux. In: Oremland R S (ed) Biogeochemistry of Global Change, pp. 193-208. Chapman and Hall, London

    Google Scholar 

  • Wang W C, Yung Y L, Lacis A A, Mo J & Hansen J E (1976) Greenhouse effects due to man-made pertubations of trace gases. Science 194: 685-690

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroeze, C., Seitzinger, S.P. Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050: a global model. Nutrient Cycling in Agroecosystems 52, 195–212 (1998). https://doi.org/10.1023/A:1009780608708

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009780608708

Navigation