Skip to main content
Log in

Affinity of Hemicellulose for Cellulose Produced by Acetobacter Xylinum

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose composites were produced by culturing Acetobacter aceti subsp. xylinum (ATCC 53524, agitation tolerant strain) under shaking and agitating conditions in the presence of 2% pine or beech Björkman lignin-carbohydrate complexes (LCCs) or six different types of hemicellulosic polysaccharides including glucuronoxylan, glucomannan, O-acetyl-glucuronoxylan, arabinoglucuronoxylan, arabinogalactan and xyloglucan. Hemicellulosic polysaccharide contents in cellulose composites were similar in spite of the differences in culture, shaking and agitating conditions. On the basis of hemicellulosic polysaccharide contents and X-ray diffraction patterns after extraction by dilute NaOH solution, glucomannan family polysaccharides were found to have the highest affinity to bacterial cellulose. Composites with neutral and acidic LCCs were resistant against alkali while high lability of their delignified carbohydrates against alkali indicates the importance of lignin for formation of cellulose-hemicellulose-lignin framework of plant secondary cell-walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Adams, G. A. (1965) Arabinoglycuronoxylan, arabinoxylan, and xylan; Purification using a copper complex and purification by fractional precipitation of acetates. In Methods in Carbohydrate Chemistry Vol. V: Polysaccharides Preparations (R. L. Whistler, ed.). Academic Press, New York, pp. 170-;175.

    Google Scholar 

  • Atalla, R. H. and VanderHart, D. L. (1984) Native cellulose: A composite of two distinct crystalline forms. Science 223, 283-;285.

    Google Scholar 

  • Atalla, R. H., Hackney, J. M., Uhlin, I. and Thompson, N. S. (1993) Hemicelluloses as structure regulators in the aggregation of native cellulose. Int. J. Biol. Macromol. 15, 109-;112.

    Google Scholar 

  • Azuma, J. (1989) Analysis of lignin-carbohydrate complexes of plant cell walls. In Plant fibers edited by H. F. Linskens and J. F. Jackson. Springer-Verlag, Berlin, pp. 100-;126.

    Google Scholar 

  • Ben-Hayim, G. and Ohad, I. (1965) Synthesis of cellulose by Acetobacter xylinum. VIII. On the formation and orientation of bacterial cellulose fibrils in the presence of acidic polysaccharides. J. Cell Biol. 25, 191-;207.

    Google Scholar 

  • Brown, R. M., Jr., Haigler, C. and Cooper, K. (1982) Experimental induction of altered nonmicrofibrillar cellulose. Science 218, 1141-;1142.

    Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350-;356.

    Google Scholar 

  • Gidley, M. J., Lillford, P. J., Rowlands, D. W., Lang, P., Dentini, M., Crescenzi, V., Edwards, M., Fanutti, C. and Grant Reid, J. S. (1991) Structure and solution properties of tamarind-seed polysaccharide. Carbohydr. Res. 214, 299-;314.

    Google Scholar 

  • Hackney, J. M., Atalla, R. H. and VanderHart, D. L. (1994) Modification of crystallinity and crystalline structure of Acetobacter xylinum cellulose in the presence of water-soluble β-1,4-linked polysaccharides: 13C-NMR evidence. Int. J. Biol. Macromol. 16, 215-;218.

    Google Scholar 

  • Haigler, C. H., Brown, R. M., Jr. and Benziman, M. (1980) Calcofluor White ST alters the in vivo assembly of cellulose microfibrils. Science 210, 903-;906.

    Google Scholar 

  • Haigler, C. H., White, A. R., Brown, R. M., Jr. and Cooper, K. M. (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J. Cell Biol. 94, 64-;69.

    Google Scholar 

  • Hestrin, S. and Schramm, M. (1954) Synthesis of cellulose by Acetobacter xylinum. Biochem. J. 58, 345-;352.

    Google Scholar 

  • Huang, Y., Indrarti, L., Azuma, J. and Okamura, K. (1992) Simultaneous determination of xylose and uronic acid in beech xylan by methanolysis. Mokuzai Gakkaishi 38, 1168-;1171.

    Google Scholar 

  • Kai, A. and Xu, P. (1991) Orientation of crystallites in the bacterial cellulose-fluorescent brightener complex membrane. Koubunshi Ronbunshu 48, 449-;452.

    Google Scholar 

  • Kai, A. and Mondal, I. H. (1997) Influence of substituent of direct dye having bisphenylenebis(azo) skeletal structure on structure of nascent cellulose produced by Acetobacter xylinum [I]: different influence of Direct Red 28, Blue 1 and 15 on nascent structure. Int. J. Biol. Macromol. 20, 221-;231.

    Google Scholar 

  • Karácsonyi, S., Alföldi, J., Kubacková, M. and Stupka, L. (1983) Chemical and 13C-NMR studies on the distribution of the O-acetyl groups in O-acetyl (4-O-methyl-D-glucurono)-D-xylan from white willow (Salix alba L.). Cellulose Chem. Technol. 17, 637-;645.

    Google Scholar 

  • Karácsonyi, S., Kovácik, V., Alföldi, J. and Kubacková, M. (1984) Chemical and 13C-N.M.R. studies of an arabinogalactan from Larix sibirica L. Carbohydr. Res. 134, 265-;274.

    Google Scholar 

  • Laffend, K. B. and Swenson, H. A. (1968) Effect of acetyl content of glucomannan on its sorption onto cellulose and its beater additive properties II. Effect on beater additive properties. Tappi 51, 141-;143.

    Google Scholar 

  • Saeman, J. F., Moore, W. E., Mitchell, R. L. and Millett, M. A. (1954) Technique for the determination of pulp constituents by quantitative paper chromatography. Tappi 37, 336-;343.

    Google Scholar 

  • Sugiyama, J., Okano, T., Yamamoto, H., Horii, F. (1990) Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment. Macromolecules 23, 3196-;3198.

    Google Scholar 

  • Sugiyama, J., Persson, J. and Chanzy, H. (1991a) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24, 2461-;2466.

    Google Scholar 

  • Sugiyama, J., Vuong, R. and Chanzy, H. (1991b) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24, 4168-;4175.

    Google Scholar 

  • Timell, T. E. (1965) Glucomannans from the wood of angiosperms. In Methods in Carbohydrate Chemistry Vol. V: Polysaccharides Preparations (R. L. Whistler, ed.). Academic Press, New York, pp. 137-;138.

    Google Scholar 

  • Uhlin, K. I., Atalla, R. H. and Thompson, N. S. (1995) Influence of hemicelluloses on the aggregation patterns of bacterial cellulose. Cellulose 2, 129-;144.

    Google Scholar 

  • VanderHart, D. L. and Atalla, R. H. (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17, 1465-;1472.

    Google Scholar 

  • Yamamoto, H. and Horii, F. (1994) In situ crystallization of bacterial cellulose I. Influences of polymeric additives, stirring and on the formation of cellulose Iα and Iβ as revealed by cross polarization/;magic angle spinning (CP/;MAS) 13C NMR spectroscopy. Cellulose 1, 57-;66.

    Google Scholar 

  • Yamamoto, H., Horii, F. and Hirai, A. (1996) In situ crystallization of bacterial cellulose II. Influences of different polymeric additives on the formation of cellulose Iα and Iβ at the early stage of incubation. Cellulose 3, 229-;242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwata, T., Indrarti, L. & Azuma, JI. Affinity of Hemicellulose for Cellulose Produced by Acetobacter Xylinum. Cellulose 5, 215–228 (1998). https://doi.org/10.1023/A:1009237401548

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009237401548

Navigation