Skip to main content
Log in

In vitro crystallization of octacalcium phosphate on type I collagen: influence of serum albumin

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The heterogeneous crystallization of octacalcium phosphate (OCP, Ca8H2(PO4)6 · 5H2O) on demineralized Type I collagen has been studied from metastable supersaturated solutions, at 37°C and pH=6.50, using the constant composition crystal growth technique. The induction period, before OCP crystal growth, varied markedly with the degree of supersaturation of the solution. The data obtained allowed us to determine the apparent order for the precipitation and the growth mechanism of OCP on Type I collagen. Infrared spectroscopy analyses indicated the progressive mineralization of collagen and observations by scanning electron microscopy confirmed the development of OCP crystals on the collagen surface. The influence of bovine serum albumin on both the kinetics of OCP nucleation and growth has also been investigated. Because this protein was adsorbed on calcium phosphate nuclei, it exhibited two distinct effects as a function of its concentration in solution. We proposed a mechanism explaining the interaction between albumin and calcium phosphate nuclei or crystals and its incidence on the OCP crystallization kinetics. Observations by scanning electron microscopy revealed a modification of the size and the appearance of crystals grown on collagen due to the adsorption of albumin on the crystal surface. © 1999 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Paule, S. Bernick, B. Strates and M. E. Nimmi, J. Biomed. Mater. Res. 26 (1992) 1169.

    PubMed  Google Scholar 

  2. T. Chandy, M. Mohanty, A. John, S. Bhaskara rao, R. Sivakumar, C. P. Sharma and M. S. Valiathan, Biomaterials 17 (1996) 577.

    PubMed  Google Scholar 

  3. B. B. Tomazic, W. E. Brown, L. A. Queral and M. Sadovnik, Astherosclerosis 69 (1988) 5.

    Google Scholar 

  4. B. B. Tomazic, E. S. Etz and W. E. Brown, Scann. Microsc. 1 (1987) 95.

    Google Scholar 

  5. M. J. Glimcher, in “Calcium in biological systems”, edited by R. P. Rubin, G. B. Weiss and J. W. Putney (Plenum, 1985) p. 607.

  6. A. Endo and M. J. Glimcher, Connect. Tissue Res. 21 (1989) 179.

    PubMed  Google Scholar 

  7. J. D. Termine, H. K. Kleinman, S. W. Whitson, K. M. Conn, M. L. Mcgarvey and G. R. Martin, Cell 26 (1981) 99.

    PubMed  Google Scholar 

  8. J. T. Triffitt, in “Fundamental and clinical bone physiology”, edited by M. R. Urist (J. B. Lippincot, Philadelphia, PA, 1980) p. 45.

    Google Scholar 

  9. P. G. Koutsoukos and G. H. Nancollas, Colloids Surfaces 28 (1987) 95.

    Google Scholar 

  10. W. E. Brown, J. R. Lehr, J. P. Smith and A. W. Frazier, J. Amer. Chem. Soc. 79 (1957) 5318.

    Google Scholar 

  11. R. Z. Legeros, in “Hydroxyapatite and related materials”, edited by P. W. Brown and P. Constantz (CRC Press, 1994) p. 3.

  12. D. J. White and E. R. Cox, A.C.S. Symposium Series, “Surface Reactive Peptides and Polymers: Discovery Commer”, 444 (1991) p. 177.

    Google Scholar 

  13. M. J. Glimcher, L. C. Bonar, M. D. Grynpas, W. J. Landi snd A. H. Roufosse, J. Cryst. Growth 53 (1981) 100.

    Google Scholar 

  14. D. C. Carter and J. X. Ho, in “Advances in protein chemistrylipoproteins apolipoproteins and lipases”, Vol. 45, edited by C. B. Anfinsen, J. T. Edsall, F. M. Richards, D. S. Eisenberg and V. N. Schumaker (Academic Press, 1994) p. 153.

  15. V. Hlady and H. Furedi-milhofer, J. Colloid Interface Sci. 69 (1979) 460.

    Google Scholar 

  16. M. J. Mura, S. Behr, E. F. Bres and J. C. Voegel, in “Interfaces in biomaterials sciences”, Vol. 13, edited by D. Muster and G. Hastings (Elsevier, North Holland, 1989) p. 189.

    Google Scholar 

  17. K. Kandori, S. Sawai, Y. Yamamoto, H. Saito and T. Ishikawa, Colloids Surfaces 68 (1992) 283.

    Google Scholar 

  18. J. Garnett and P. Dieppe, Biochem. J. 266 (1990) 863.

    PubMed  Google Scholar 

  19. K. O. Achin, M. Johnsson, E. J. Bergey, M. J. Levine and G. H. Nancollas, Colloids Surfaces A Physicochem. Engng Aspects 78 (1993) 229.

    Google Scholar 

  20. W. M. Mullins and C. R. Elsass, B. J. Lett. (1992) 326.

  21. M. B. Tomson and G. H. Nancollas, Science 200 (1978) 1059.

    Google Scholar 

  22. J. W. Mullin, in “Crystallization”, 2nd Edn (Butterworths, London, 1972) 189.

    Google Scholar 

  23. A. E. Nielsen, in “Kinetics of precipitation”, (Pergamon, New York, 1964) 1-21.

    Google Scholar 

  24. J. C. Heughebaert and G. H. Nancollas, J. Phys. Chem. 88 (1984) 2478.

    Google Scholar 

  25. J. C. Heughebaert, S. J. Zawacki and G. H. Nancollas, J. Cryst. Growth 63 (1983) 83.

    Google Scholar 

  26. R. Boistelle and I. Lopez-valero, ibid. 102 (1990) 609.

    Google Scholar 

  27. M. N. Taravel, PhD thesis, University Claude Bernard, Lyon 1 (1994).

  28. M. Iijima, Y. Morawaki and Y. Kuboki, J. Cryst. Growth 137 (1994) 553.

    Google Scholar 

  29. S. A. Smesko, R. P. Singh, A. C. Lanzalaco and G. H. Nancollas, Colloids Surfaces 30 (1988) 361.

    Google Scholar 

  30. M. H. Salimi, PhD thesis, Sunny, Buffalo (1985).

  31. L. Addadi, J. Moradian-oldak, H. Furedimilhofer, S. Weiner and A. Veis, in “Chemistry and biology of mineralized tissues”, edited by H. Slavkin and P. Price (Excerpta Medica: Elsevier Science Publishers BV, 1992) p. 153.

  32. O. Suzuki, H. Yagishita, M. Yamazaki and T. Aoba, Cells Mater. 5 (1995) 45.

    Google Scholar 

  33. A. Ebrahimpour, L. Perez and G. H. Nancollas, Langmuir 7 (1991) 577.

    Google Scholar 

  34. A. Linde, A. Lussi and M. A. Crenshaw, Calcif. Tissue Int. 44 (1989) 286.

    PubMed  Google Scholar 

  35. S. Mann, Nature 332 (1988) 119.

    Google Scholar 

  36. T. Kokubo, K. Hata, T. Nakamura and T. Yamamuro, in “Bioceramics”, Vol. 4, edited by W. Bonfield, G. W. Hastings and K. E. Tanner (Butterworth-Heinemann, London, 1991) p. 113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Combes, C., Rey, C. & Freche, M. In vitro crystallization of octacalcium phosphate on type I collagen: influence of serum albumin. Journal of Materials Science: Materials in Medicine 10, 153–160 (1999). https://doi.org/10.1023/A:1008933406806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008933406806

Keywords

Navigation