Skip to main content
Log in

Symplectic Mapping for Satellites and Space Debris Including Nongravitational Forces

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The paper presents an efficient algorithm for the study of satellite and space debris orbits on long time intervals. The averaged equations of motion are integrated by means of the implicit midpoint method. This approach is known as a symplectic mapping technique. The perturbing forces included in the mapping are: the geopotential, the atmospheric drag, lunisolar perturbations and the direct radiation pressure (without shadow effects). The influence of the atmosphere is approximated by simple methods for the estimation of integrals. The described mapping is valid for the wide range of orbits including the resonant and the eccentric ones; it can be helpful in practical and theoretical problems. The lifetime of GPS transfer orbits is discussed as an exemplary application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • —, 1992: The Astronomical Almanac for the Year 1993, U.S. Government Printing Office/HMSO, Washington/London.

  • Bendisch, J.-U., 1994: Die langfristige Entwicklung von Erdumlaufbahnen im Hinblick auf die Objektdichte im Erdnahen Weltraum, Verlag Shaker, Aachen.

    Google Scholar 

  • Breiter, S. and Métris, G., 1997: 'Modelling space debris orbits by symplectic mapping technique', in: Proc. Second European Conf. on Space Debris, ESA SP-393, pp. 317–322.

    Google Scholar 

  • Brouwer, D., 1959: 'Solution of the problem of artificial satellite theory without drag', Astron. J. 64, 378–397.

    Google Scholar 

  • Coffey, S., Deprit, A. and Deprit, E., 1994: 'Frozen orbits for satellites close to an earth-like planet', Celest. Mech. Dynam. Astron. 59, 37–72.

    Google Scholar 

  • Gooding, R. H., 1971: 'A recurrence relation for inclination functions', Celest. Mech. 2, 91–98.

    Google Scholar 

  • Hoots, F. R. and France, R. G., 1987: 'An analytic satellite theory using gravity and a dynamic atmosphere', Celest. Mech. 40, 1–18.

    Google Scholar 

  • Métris, G., 1991: 'Théorie du Mouvement du Satellite Artificiel', Doctoral Dissertation, Observatoire de Paris.

  • Siebold, K. H. and Reynolds, R. C., 1995: 'Lifetime reduction of geosyncronous transfer orbits with the help of lunar-solar perturbations', Adv. Space Res. 16, (11)155–(11)161.

    Google Scholar 

  • Sanz-Serna, J. M. and Calvo, M. P., 1994: Numerical Hamiltonian Problems, Chapman & Hall, London/Glasgow/New York/Tokyo/Melbourne/Madras, pp. 72–74.

    Google Scholar 

  • Sterne, T. E., 1959: 'Effect of the rotation of a planetary atmosphere upon the orbit of a close satellite', Am. Rocket Soc. J. 29, 777–782.

    Google Scholar 

  • Wnuk, E., 1989: 'Tesseral harmonic perturbations for high order and degree harmonics', Celest. Mech. 44, 179–192.

    Google Scholar 

  • Yoshida, H., 1993: 'Recent progress in the theory and application of symplectic integrators', Celest. Mech. 56, 27–43.

    Google Scholar 

  • Zarouatti, O., 1987: Trajectoires Spatiales, Cepadues-Editions, Toulouse, pp. 129–130.

    Google Scholar 

  • Zeldovich, Y. B. and Myškis, A. D., 1976: Elements of Applied Mathematics, Mir, Moscow, pp. 76–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breiter, S., Métris, G. Symplectic Mapping for Satellites and Space Debris Including Nongravitational Forces. Celestial Mechanics and Dynamical Astronomy 71, 79–94 (1998). https://doi.org/10.1023/A:1008356915763

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008356915763

Navigation