Skip to main content
Log in

Processing Symplectic Methods for Near-Integrable Hamiltonian Systems

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Processing techniques are used to approximate the exact flow of near-integrable Hamiltonian systems depending on a small perturbation parameter. We study the reduction of the number of conditions for the kernel for this type of Hamiltonians and we build third, fourth and fifth order methods which are shown to be more efficient than previous algorithms for the same class of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blanes, S.: Estudio de la evolución de sistemas dinámicos clásicos y cuánticos utilizando métodos algebraicos, Ph. D. Thesis. Universitat de València, 1998.

  2. Blanes, S., Casas, F. and Ros, J.: 'Symplectic integrators with processing: a general study', SIAM J. Sci. Comput 21 (1999), 711–727.

    Article  MATH  MathSciNet  Google Scholar 

  3. Butcher, J.: 'The effective order of Runge-Kutta methods', in: Conference on the numerical solution of differential equations. Lecture Notes in Math., Vol. 109, Springer, Berlin, 1969, 133–139.

    Google Scholar 

  4. Danby, J. M. A.: Fundamentals of Celestial Mechanics, Willmann-Bell, Richmond, 1988.

    Google Scholar 

  5. Gladman, B., Duncan, M. and Candy, J.: 'Symplectic integrators for long-term integrations in Celestial Mechanics', Celest. Mech. & Dyn. Astr. 52 (1991), 221–240.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Kinoshita, H. Yoshida, H. and Nakai, H.: 'Symplectic integrators and their application to Dynamical Astronomy', Celest. Mech. & Dyn. Astr. 50 (1991), 59–71.

    Article  MATH  ADS  Google Scholar 

  7. Kirchgraber, U.: 'An ODE-solver based on the method of averaging', Numer. Math. 53 (1988), 621–652.

    Article  MATH  MathSciNet  Google Scholar 

  8. Koseleff, P.-V.: Formal Calculus for Lie Methods in Hamiltonian Mechanics. Ph.D. Thesis, Lawrence Berkeley Laboratory, 1994.

  9. Liao, X.: 'Symplectic integrator for general near-integrable Hamiltonian system', Celest.Mech. & Dyn. Astr. 66 (1997), 243–253.

    Article  MATH  ADS  Google Scholar 

  10. López-Marcos, M. A., Sanz-Serna, J. M. and Skeel, R. D.: 'Cheap enhancement of symplectic integrators', in: D. F. Griffiths and G. A. Watson (eds), Numerical Analysis 1995, Longman Harlow (Essen), 1996, pp. 107–122.

  11. Magnus, W., Karrass, A. and Solitar, D.: Combinatorial Group Theory, 2nd revised edition, Dover, New York, 1976.

    Google Scholar 

  12. McLachlan, R. I.: 'On the numerical integration of ordinary differential equations by symmetric composition methods', SIAM J. Sci. Comput. 16 (1995), 151–168.

    Article  MATH  MathSciNet  Google Scholar 

  13. McLachlan, R. I.: Composition methods in the presence of small parameters, BIT 35 (1995), 258–268.

    Article  MATH  MathSciNet  Google Scholar 

  14. McLachlan, R. I.: 'More on symplectic correctors', In: J. E. Marsden, G. W. Patrick, and W. F. Shadwick (eds) Integration Algorithms and Classical Mechanics, American Mathematical Society, Providence, R.I., 1996, pp. 141–149.

    Google Scholar 

  15. McLachlan, R. I. and Gray, S. K.: 'Optimal stability polynomials for splitting methods, with application to the time-dependent Schrödinger equation', Appl. Numer. Math. 25 (1997), 275–286.

    Article  MATH  MathSciNet  Google Scholar 

  16. Meirovich, L.: Methods of Analytical Dynamics, McGraw-Hill, New York, 1988.

    Google Scholar 

  17. Michel, P. and Valsecchi, G. B.: 'Numerical experiments on the efficiency of second-order mixed-variable symplectic integrators for n-body problems', Celest. Mech. & Dyn. Astr. 65 (1997), 355–371.

    Article  MATH  ADS  Google Scholar 

  18. Mikkola, S.: 'Practical symplectic methods with time transformation for the few-body problem', Celest. Mech. & Dyn. Astr. 67 (1997), 145–165.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Okunbor, D. I. and Skeel, R. D.: 'Canonical Runge-Kutta-Nyström methods of orders five and six', J. Comp. Appl. Math. 51 (1994), 375–382.

    Article  MATH  MathSciNet  Google Scholar 

  20. Rowlands, G.: 'A numerical algorithm for Hamiltonian systems', J. Comput. Phys. 97 (1991), 235–239.

    Article  MATH  MathSciNet  Google Scholar 

  21. Saha, P. and Tremaine, S.: 'Symplectic integrators for solar system dynamics', Astron. J. 104 (1992), 1633–1640.

    Article  ADS  Google Scholar 

  22. Sanz-Serna, J. M. and Calvo, M. P.: Numerical Hamiltonian Problems, Chapman & Hall, London, 1994.

    Google Scholar 

  23. Suzuki, M.: 'Improved Trotter-like formula', Phys. Lett. A 180 (1993), 232–234.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Varadarajan, V. S.: Lie Groups, Lie Algebras and Their Representations, Springer-Verlag, New York, 1984.

    Google Scholar 

  25. Wisdom, J. and Holman, M.: 'Symplectic maps for the N-body problem', Astron. J. 102 (1991), 1528–1538.

    Article  ADS  Google Scholar 

  26. Wisdom, J., Holman, M. and Touma, J.: 'Symplectic correctors', in: J. E. Marsden,, G. W. Patrick, and W. F. Shadwick, (eds) Integration Algorithms and Classical Mechanics, American Mathematical Society, Providence, R.I., 1996, pp. 217–244.

    Google Scholar 

  27. Yoshida, H.: 'Construction of higher order symplectic integrators', Phys. Lett. A 150 (1990), 262–268.

    Article  MathSciNet  ADS  Google Scholar 

  28. Yoshida, H.: 'Recent progress in the theory and application of symplectic integrators', Celest. Mech. & Dyn. Astr. 56 (1993), 27–43.

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanes, S., Casas, F. & Ros, J. Processing Symplectic Methods for Near-Integrable Hamiltonian Systems. Celestial Mechanics and Dynamical Astronomy 77, 17–36 (2000). https://doi.org/10.1023/A:1008311025472

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008311025472

Navigation