Skip to main content
Log in

Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Microsensors used in microbial ecology are reviewed with emphasis on new sensor developments (NO3 -, NO2 -, NH4 +, CO2, H2, H2S and CH4 microsensors as well as fiberoptical microsensors for O2, temperature and pH). Examples of microsensor applications in biofilms and activated sludge flocs are presented, where sulfate reduction and denitrification were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amann R & Kühl M (1998) In situ methods for assessment of microorganisms and their activities. Curr. Opinion Microbiol. 1: 352–358

    Google Scholar 

  • Amann R, Ludwig W & Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–169

    Google Scholar 

  • Ammann D (1986) Ion-selective microelectrodes: principles, design and applications. Springer, Berlin

    Google Scholar 

  • Ammann D, Bührer T, Schefer U, Müller M & Simon W (1987) Intracellular neutral carrier based Ca2+ microelectrode with subnanomolar detection limit. Pflügers Arch. 409: 223–228

    Google Scholar 

  • Ammann D, Lanter F, Steiner RA, Schulthess P, Shio Y & Simon W (1981) Neutral carrier based hydrogen-ion selective microsensor for extra-and intracellular studies. Anal. Chem. 53: 2267–2269

    Google Scholar 

  • Baumgärtl H & Lübbers DW (1983) Platinum needle electrodes for polarographic measurement of local O2 pressure in cellular range of living tissue. Its construction and properties. In: Gnaiger E & Forstner H (Eds) Polarographic oxygen sensors: Aquatic and physiological applications, (pp 37–65). Springer-Verlag, Heidelberg

    Google Scholar 

  • Brendel PJ & Luther III GW (1995) Development of a gold amalgam voltametric microelectrode for determination of dissolved Fe, Mn, O2 and S(II-) in porewaters of marine and freshwater sediments. Environ. Sci. Technol. 29: 751–761

    Google Scholar 

  • Brune A, Emerson D & Breznak JA (1995) The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microbiol. 61: 2681–2687

    Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14: 454–458

    Google Scholar 

  • Cronenberg CCH, Van Groen H, De Beer D & Van den Heuvel JC (1991) Oxygen-independent glucose microsensor based on glucose oxidase. Anal. Chim. Acta 242: 275–278

    Google Scholar 

  • Damgaard LR, Larsen LH & Revsbech NP (1995) Microscale biosensors for environmental monitoring. Trends Anal. Chem. 14: 300–303

    Google Scholar 

  • Damgaard LR & Revsbech NP (1997) A microscale biosensor for methane containing methanotrophic bacteria and an internal oxygen reservoir. Anal. Chem. 69: 2262–2267

    Google Scholar 

  • De Beer D, Glud A, Epping E & Kühl M (1997a) A fast responding CO2 micro-electrode for profiling sediments, microbial mats and biofilms. Limnol. Oceanogr. 42: 1590–1600

    Google Scholar 

  • De Beer D, Schramm A, Santegoeds CM & Kühl M (1997b) A nitrite microsensor for profiling environmental biofilms. Appl. Environ. Microbiol. 63: 973–977

    Google Scholar 

  • De Beer D, Srinivasan R & Stewart PS (1994a) Direct measurements of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 60: 4339–4344

    Google Scholar 

  • De Beer D, Stoodley P, Roe F & Lewandowski Z (1994b) Effect of biofilm structures on oxygen distribution and mass transfer. Biotechnol. Bioeng. 43: 1131–1138

    Google Scholar 

  • De Beer D & Sweerts JPRA (1989) Measurements of nitrate gradients with an ion-selective microelectrode. Anal. Chim. Acta 219: 351–356

    Google Scholar 

  • De Beer D & Van den Heuvel JC (1988) Response of ammonium-selective microelectrodes based on the neutral carrier nonactin. Talanta 35: 728–730

    Google Scholar 

  • Ebert A & Brune A (1997) Hydrogen concentration profiles at the oxic-anoxic interface: A microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes. Appl. Environ. Microbiol. 63: 4039–4046

    Google Scholar 

  • Hinke J (1969) Glass microelectrodes for the study of binding and compartmentalisation of intracellular ions. In: Lavallee M, Schanne OF & Herbert NC (Eds) Glass microelectrodes, (pp 349–375). Wiley

  • Jeroschewski P, Steuckart C & Kühl M (1996) An amperometric microsensor for the determination of H2S in aquatic environments. Anal. Chem. 68: 4351–4357

    Google Scholar 

  • Jørgensen BB & Des Marais DJ (1988) Optical properties of benthic photosynthetic communities: Fiber-optic studies of cyanobacterial mats. Limnol. Oceanogr. 33: 99–113

    Google Scholar 

  • Jørgensen BB & Des Marais DJ (1990) The diffusive boundary layer of sediments: Oxygen microgradients over a microbial mat. Limnol. Oceanogr. 35: 1343–1355

    Google Scholar 

  • Jørgensen BB & Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol. Oceanogr. 30: 11–21

    Google Scholar 

  • Klimant I, Kühl M, Glud RN & Holst G (1997) Optical measurements of oxygen and temperature in microscale: strategies and biological applications. Sensors and Actuators B 38–39: 29–37

    Google Scholar 

  • Klimant I, Meyer V & Kühl M (1995) Fiber–optic oxygen microsensors, a new tool in aquatic biology. Limnol. Oceanogr. 40: 1159–1165

    Google Scholar 

  • Kohls O, Klimant I, Holst G & Kühl M (1997) Development and comparison of pH microoptodes for use in marine systems. Proc. SPIE 2978: 82–94

    Google Scholar 

  • Kühl M & Jørgensen BB (1992) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl. Environ. Microbiol. 58: 1164–1174

    Google Scholar 

  • Kühl M, Lassen C & Jørgensen BB (1994) Optical properties of microbial mats: Light measurements with fiber optic microprobes. In: Stal LJ & Caumette P (Eds) Microbial mats: Structure, development, and environmental significance, (pp 149–167). Springer-Verlag, Berlin

    Google Scholar 

  • Kühl M & Revsbech NP (1998) Microsensors for the study of interfacial biogeochemical processes. In: Boudreau BP & Jørgensen BB (Eds) The bentic boundary layer, in press. Oxford University Press, Oxford

    Google Scholar 

  • Kühl M, Steuckart C, Eickert G & Jeroschewski P (1998) A H2S microsensor for profiling biofilms and sediments: Application in an acidic lake sediment. Aquat. Microb. Ecol. 15: 201–209

    Google Scholar 

  • Larsen LH, Kjaer T & Revsbech NP (1997) A microscale NO3? biosensor for environmental applications. Anal. Chem. 69: 3527–3531

    Google Scholar 

  • Larsen LH, Revsbech NP & Binnerup SJ (1996) A microsensor for nitrate based on immobilized denitrifying bacteria. Appl. Environ. Microbiol. 62: 1248–1251

    Google Scholar 

  • Muyzer G & Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) inmicrobial ecology. Antonie van Leeuwenhoek, 73: 127–141

    Google Scholar 

  • Ploug H & Jørgensen BB (1998) A net-jet flow system for mass transfer studies in sinking aggregates. Aquat. Microb. Ecol., in press

  • Ploug H, Kühl M, Buchholz-Cleven B & Jørgensen BB (1997) Anoxic aggregates – an ephemeral phenomenon in the pelagic environment? Aquat. Microb. Ecol. 13: 285–294

    Google Scholar 

  • Ramsing NB, Kühl M & Jørgensen BB (1993) Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl. Environ. Microbiol. 59: 3840–3849

    Google Scholar 

  • Revsbech NP (1989) An oxygen microelectrode with a guard cathode. Limnol. Oceanogr. 55: 1907–1910

    Google Scholar 

  • Revsbech NP & Jørgensen BB (1986) Microelectrodes: their use in microbial ecology. Adv. Microb. Ecol. 9: 293–352

    Google Scholar 

  • Revsbech NP, Jørgensen BB, Blackburn TH & Cohen Y (1983) Microelectrode studies of the photosynthesis and O2, and H2S and pH profiles of a microbial mat. Limnol. Oceanogr. 28: 1062–1074

    Google Scholar 

  • Revsbech NP, Nielsen LP, Christensen PB & Sørensen J (1988) A combined oxygen and nitrous oxide microsensor for denitrification studies. Appl. Environ. Microbiol. 45: 2245–2249

    Google Scholar 

  • Revsbech NP & Ward DM (1983) Oxygen microelectrode that is insensitive to medium chemical composition: Use in an acid microbial mat dominated by Cyanidium caldarum. Appl. Environ. Microbiol. 45: 755–759

    Google Scholar 

  • Santegoeds CM, Ferdelman TG, Muyzer G & De Beer D (1998) Structural and functional dynamics of sulfate reducing bacterial populations in biofilms. Appl. Environ. Microbiol. 64: in press

  • Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann R & Schleifer K-H (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 62: 4641–4647

    Google Scholar 

  • Schulthess P, Shijo Y, Pham HV, Pretsch E, Ammann D & Simon W (1981) A hydrogen ion-selective liquid-membrane electrode based on tri-n-dodecylamine as neutral carrier. Anal. Chim. Acta 131: 111–116

    Google Scholar 

  • Thomas RC (1978) Ion-sensitive intracellular microelectrodes, how to make and use them. Academic Press, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia M. Santegoeds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santegoeds, C.M., Schramm, A. & Beer, D.d. Microsensors as a tool to determine chemical microgradients and bacterial activity in wastewater biofilms and flocs. Biodegradation 9, 159–167 (1998). https://doi.org/10.1023/A:1008302622946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008302622946

Navigation