Skip to main content
Log in

Degradation of catechin by Bradyrhizobium japonicum

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Rhizobia utilize phenolic substances as sole carbonsource. Bradyrhizobium japonicum utilizescatechin, a unit of condensed tannin as carbonsource. To establish the degradative pathway ofcatechin, the products of catechin degradation wereisolated by paper chromatography and TLC andidentified by HPLC, UV, IR and NMR spectra. B.japonicum cleaves catechin through catechinoxygenase. Phloroglucinolcarboxylic acid andprotocatechuic acid were identified as the initialproducts of degradation. Phloroglucinolcarboxylicacid is further decarboxylated to phloroglucinolwhich is dehydroxylated to resorcinol. Resorcinolis hydroxylated to hydroxyquinol. Protocatechuicacid and hydroxyquinol undergo intradiol cleavagethrough protocatechuate 3,4-dioxygenase andhydroxyquinol 1,2-dioxygenase to formβ-carboxy cis, cis-muconic acidand maleylacetate respectively. The enzymes ofcatechin degradative pathway are inducible. Estimation of all the enzymes involved in thecatabolism of catechin reveals the existence of acatechin degradative pathway in B. japonicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbour WM, Hattermann DR & Stacey G (1991) Chemotaxis of Bradyrhizobium japonicumto soybean exudates. Appl. Environ. Microbiol. 57: 2635–2639

    Google Scholar 

  • Blackwood AC, Hang YS, Robern H & Mathur DK(1970)Reductive pathway for the degradation of phloroglucinol by a Pseudomonas. Bacteriol. Proc. 70: 124

    Google Scholar 

  • Boominathan K & Mahadevan A (1987) Plasmid encoded dissimilation of condensed tannin in Pseudomonas solanacearum. FEMS Microbiol. Lett. 40: 147–150

    Google Scholar 

  • Caetano-Anolles G, Crist-Estes DK & Bauer WD (1988) Chemotaxis of Rhizobium melilotito the plant flavone luteolin requires functional nodulation genes. J. Bacteriol. 170: 3164–3169

    Google Scholar 

  • Cartroux G, Fournier JC & Riviere J (1969) Mise en evidence rapide de l'utilization des acides-phenols par des souches bacteriennes isolees du sol. Ann. Inst. Paster. 166: 90–102

    Google Scholar 

  • Chandra T, Madhavakrishna W & Nayudamma Y (1969) Astringency in fruits. I-Microbial degradation of catechin. Can. J. Microbiol. 15: 303–306

    Google Scholar 

  • Chapman PJ & Ribbons DW (1976) Metabolism of resorcinylic compounds by bacteria: Alternative pathways for resorcinol catabolism in Pseudomonas putida. J. Bacteriol. 125: 985–998

    Google Scholar 

  • Dharmatilake AJ & Bauer WD (1992) Chemotaxis of Rhizobium melilotitowards nodulation gene inducing compounds from alfalfa roots. Appl. Environ. Microbiol. 58: 1153–1158

    Google Scholar 

  • Gajendran N & Mahadevan A (1988) Utilization of catechin by Rhizobiumsp. Plant Soil 108: 263–266

    Google Scholar 

  • Gayon PR (1972) Plant Phenolics. Oliver and Boyd, Edinburg

    Google Scholar 

  • Groseclose EE & Ribbons DW (1981) Metabolism of resorcinylic compounds by bacteria. New pathway for resorcinol catabolism in Azotobacter vinelandii. J. Bacteriol. 146: 460–466

    Google Scholar 

  • Hopper W & Mahadevan A (1991) Utilization of catechin and its metabolites by Bradyrhizobium japonicum. Appl. Microbiol. Biotechnol. 35: 411–415

    Google Scholar 

  • Hussien YA, Twefik MS & Hamdi YA (1974) Degradation of certain aromatic compounds by rhizobia. Soil Biol. Biochem. 6: 377–381

    Google Scholar 

  • Kape R, Parniske M & Werner D (1991) Chemotaxis and nodgene activity of Bradyrhizobium japonicumin response to hydroxycinnamic acids and isoflavonoids. Appl. Environ. Microbiol. 57: 316–319

    Google Scholar 

  • Larway P & Evans WC (1965) Metabolism of quinol and resorcinol by soil pseudomonads. Biochem. J. 95: 52

    Google Scholar 

  • Long SR (1989) Rhizobium-Legume nodulation: Life together in the underground. Cell 56: 203–214

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL & Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193: 265–275

    Google Scholar 

  • Mahadevan A & Sivaswamy SN (1985) Tannins and microorganisms. In: Mukerje KG, Pathak NC & Singh VP (Eds) Frontiers in Applied Microbiology Vol.I (pp 327–347) Print House. India

    Google Scholar 

  • Muthukumar G, Arunakumari A & Mahadevan A (1982) Degradation of aromatic compounds by Rhizobiumspp. Plant Soil 69: 163–169

    Google Scholar 

  • Parke D & Ornston LN (1984) Nutritional diversity of rhizobiaceae revealed by auxanography. J. Gen. Microbiol. 130: 1743–1750

    Google Scholar 

  • Parke D, Rivelli M & Ornston LN (1985) Chemotaxis to aromatic and hydroaromatic acids: Comparison of Bradyrhizobium japonicumand Rhizobium trifolii. J. Bacteriol. 163: 417–422

    Google Scholar 

  • Raju SG, Khan NV & Vaidyanathan CS (1983) Separation of protocatechuate and homoprotocatechuate by paper chromatography and estimation of protocatechuate by colorimetry using a new FeCl3 reagent. J. Indian Inst. Sci. 64: 1–9

    Google Scholar 

  • Rao JR, Sharma ND, Hamilton JTG, Boyd DR & Cooper JE (1991) Biotransformation of the pentahydroxy flavone quercetin by Rhizobium lotiand Bradyrhizobiumstrains (Lotus). Appl. Environ. Microbiol. 57: 1563–1565

    Google Scholar 

  • Rao JR, & Cooper JE (1994) Rhizobia catabolize nodgene-inducing flavonoids via C-ring fission mechanisms. J. Bacteriol. 176: 5409–5413

    Google Scholar 

  • Waheeta A & Mahadevan A (1994) Degradation of aromatic substances by rhizobia. In: Mukerji, KG & Singh, VP (Eds) Frontiers in Applied Microbiology Vol. 7, (pp 37–56) Rastogi & Co., Meerut, India.

    Google Scholar 

  • Waheeta A, William F & Mahadevan A (1984) Degradation of catechin by Rhizobium japonicum. Abs. no. 144, 25th annualmeeting, Association of Microbiologists of India, Dec. 7-9, Pantnagar, India. p. 60

  • Walker RL & Taylor BG (1983) Metabolism of phloroglucinol by Fusarium solan i. Arch. Microbiol. 134: 123–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopper, W., Mahadevan, A. Degradation of catechin by Bradyrhizobium japonicum. Biodegradation 8, 159–165 (1997). https://doi.org/10.1023/A:1008254812074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008254812074

Navigation